

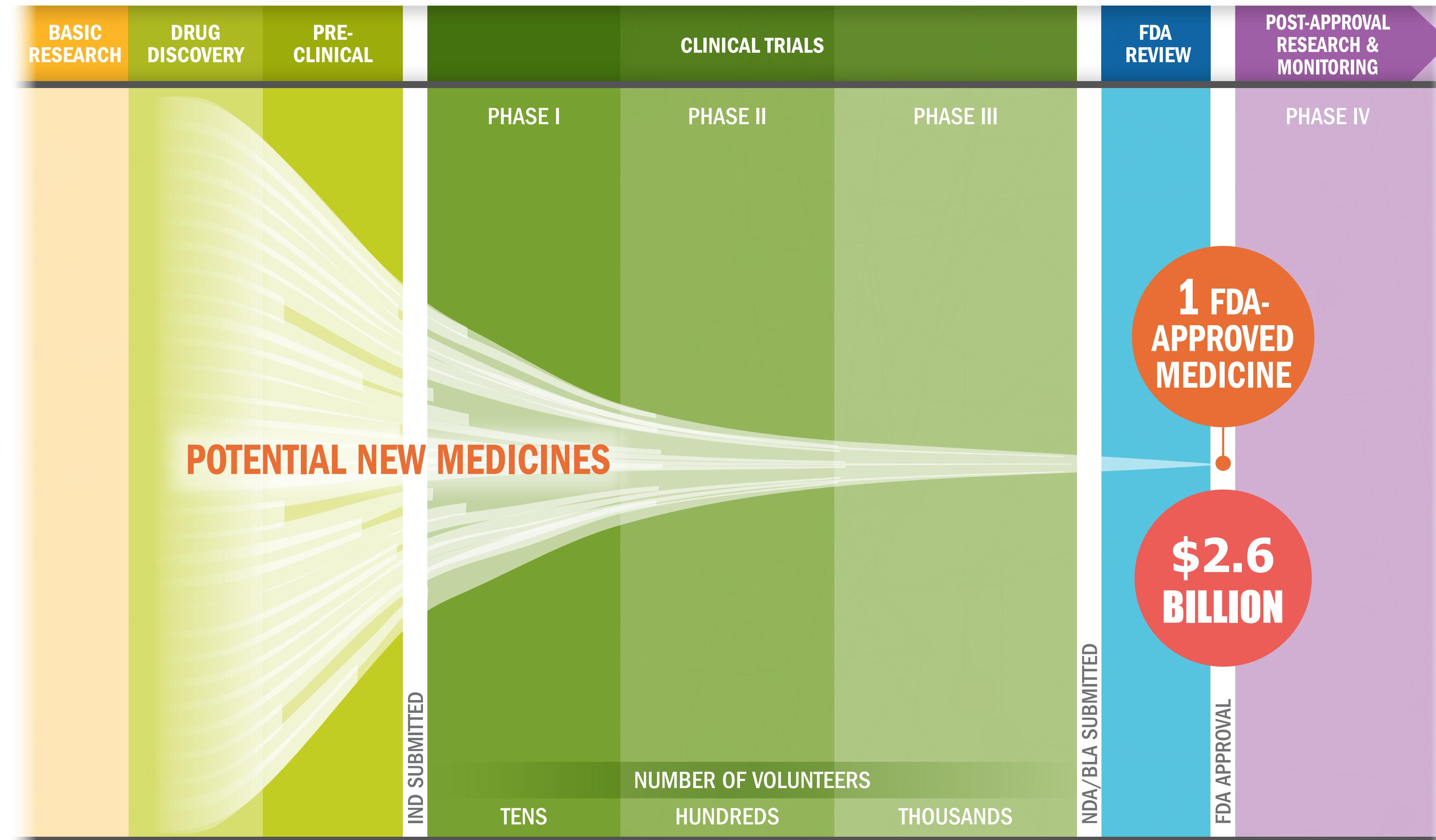
Deep and generative modeling for protein-ligand interactions

David Koes

@david_koes

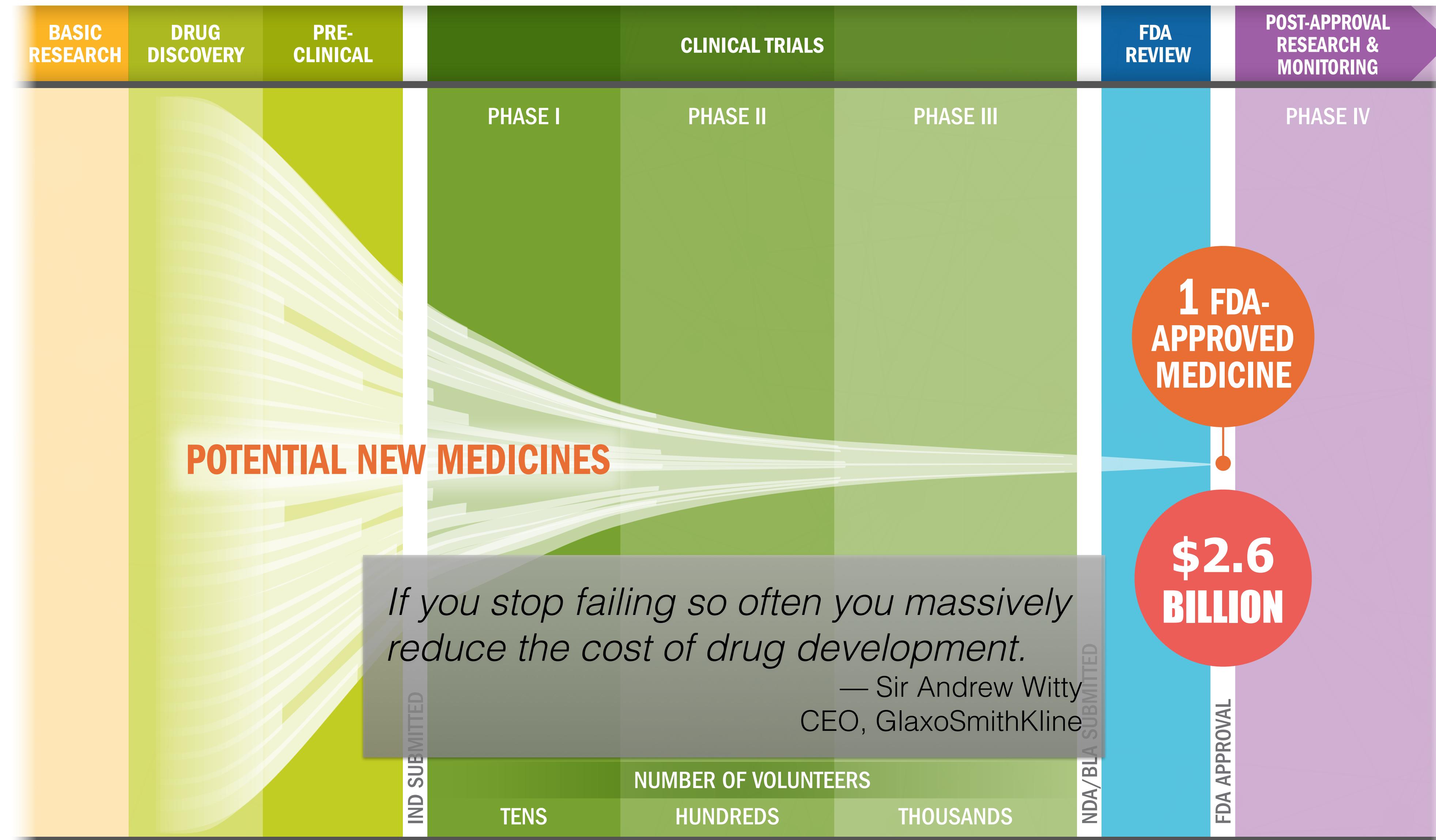
Critical Assessment of Techniques for Protein Structure Prediction
Cancun, Mexico
December 2, 2018

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS



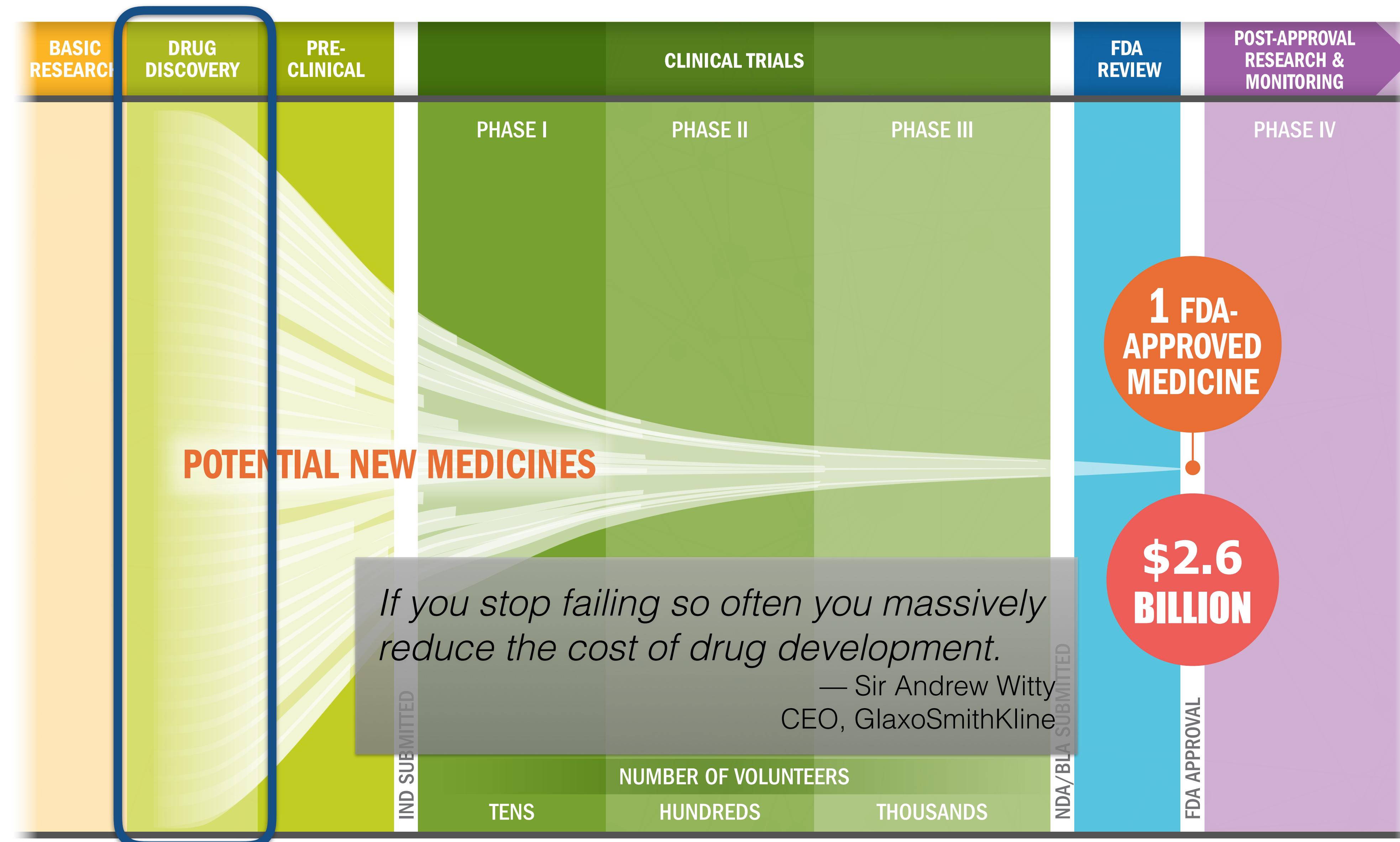
Source: Pharmaceutical Research and Manufacturers of America (<http://phrma.org>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS



Source: Pharmaceutical Research and Manufacturers of America (<http://phrma.org>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS



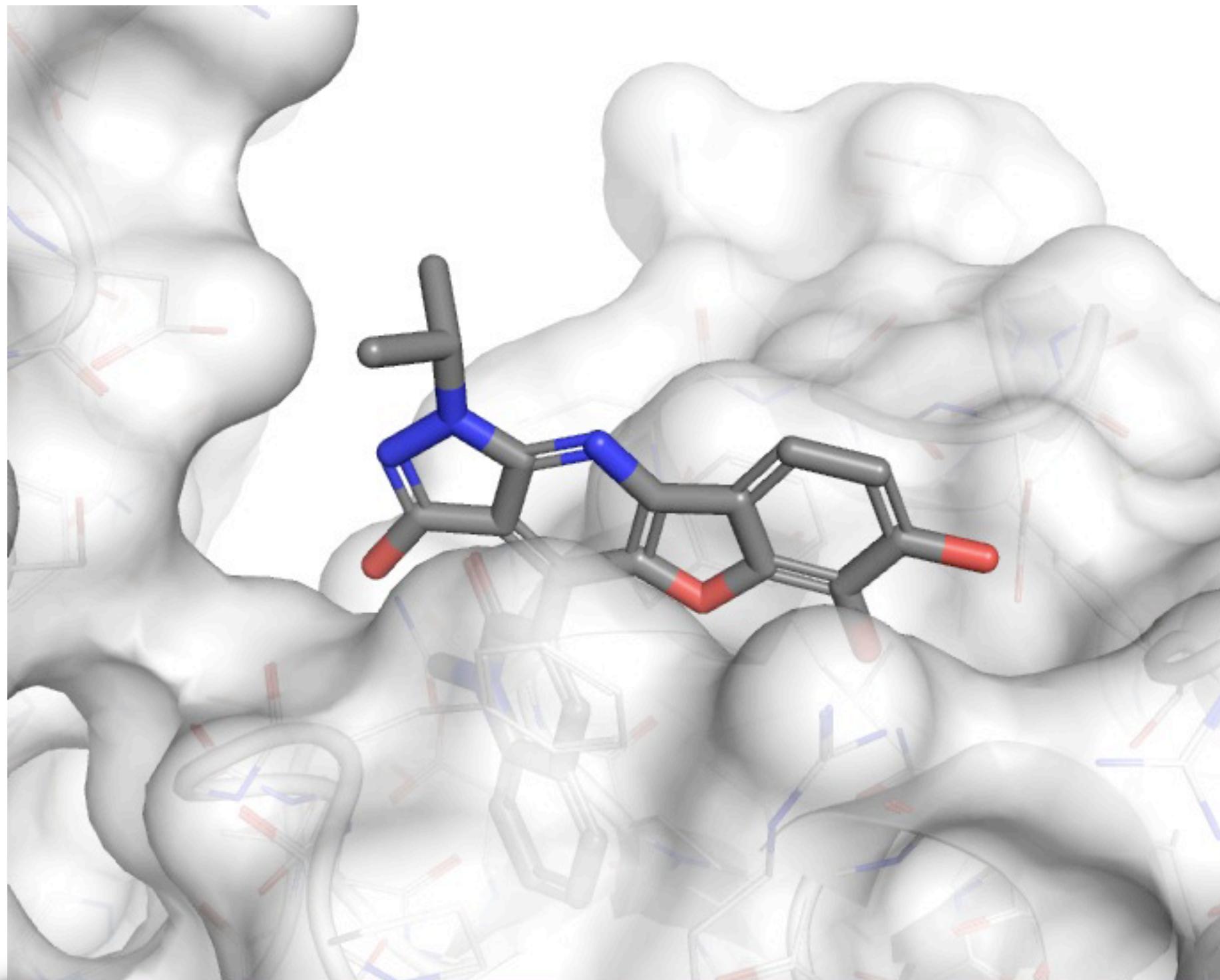
Source: Pharmaceutical Research and Manufacturers of America (<http://phrma.org>)

Structure Based Drug Design

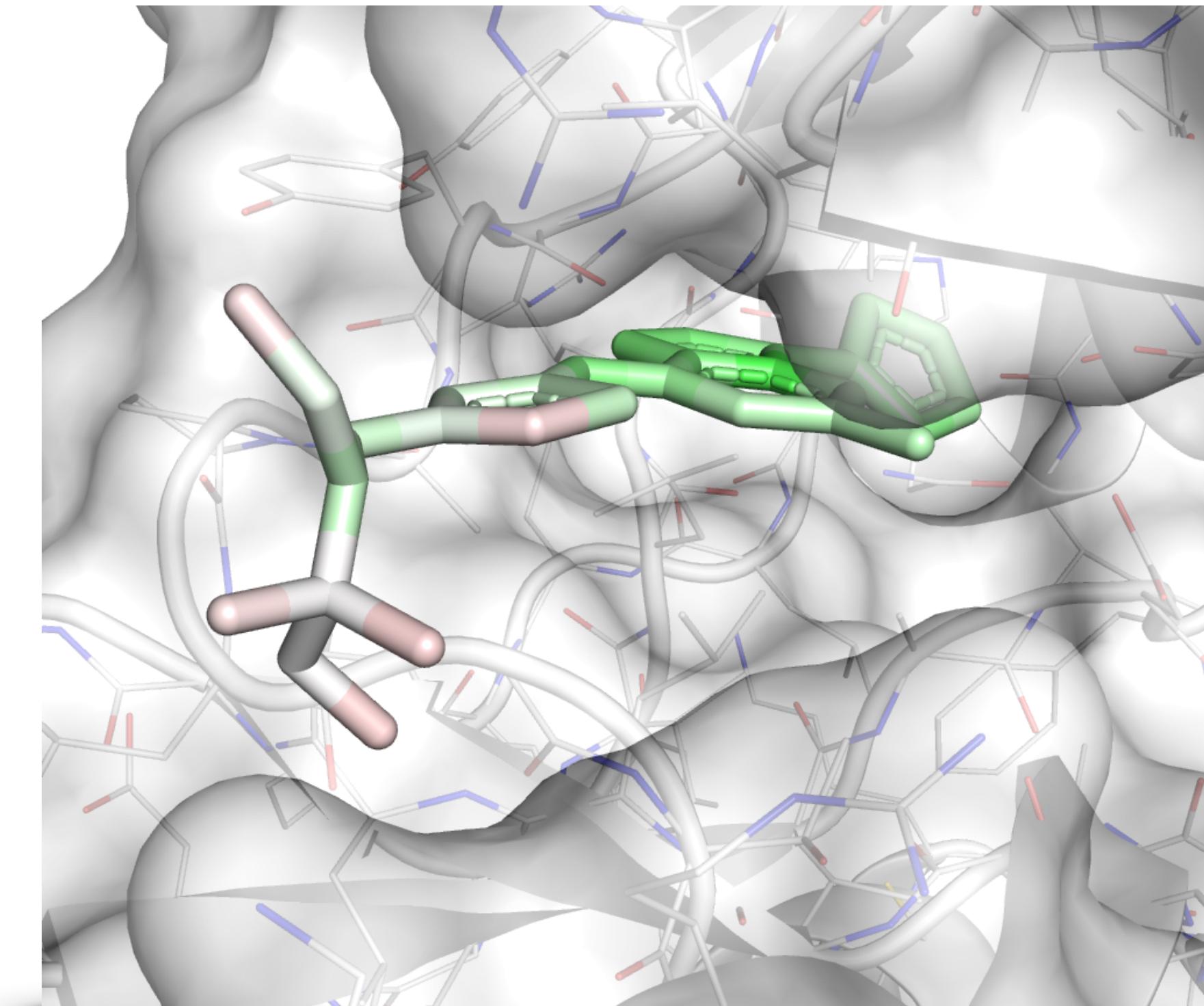
Pose Prediction

Binding Discrimination

Affinity Prediction



Virtual Screening



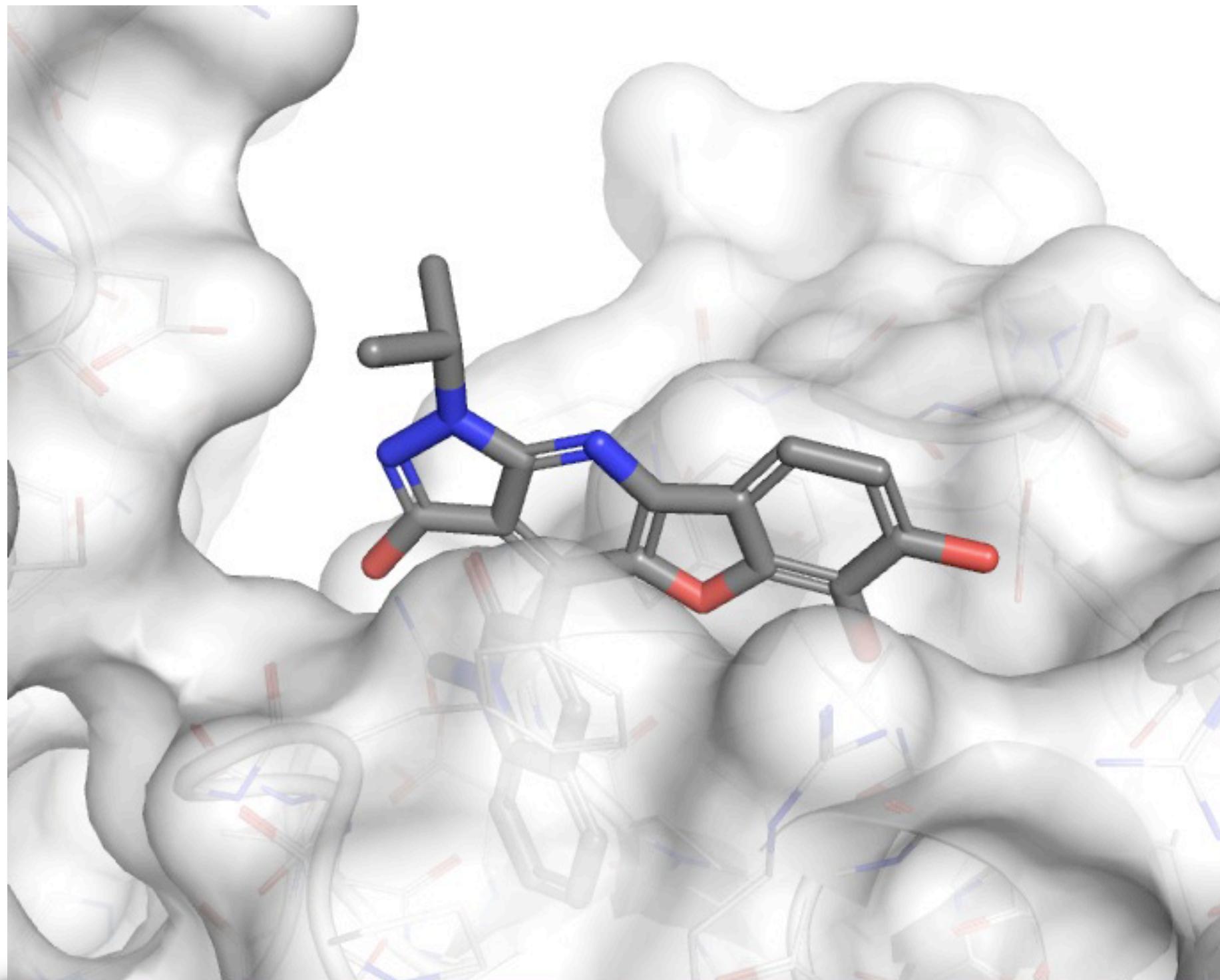
Lead Optimization

Structure Based Drug Design

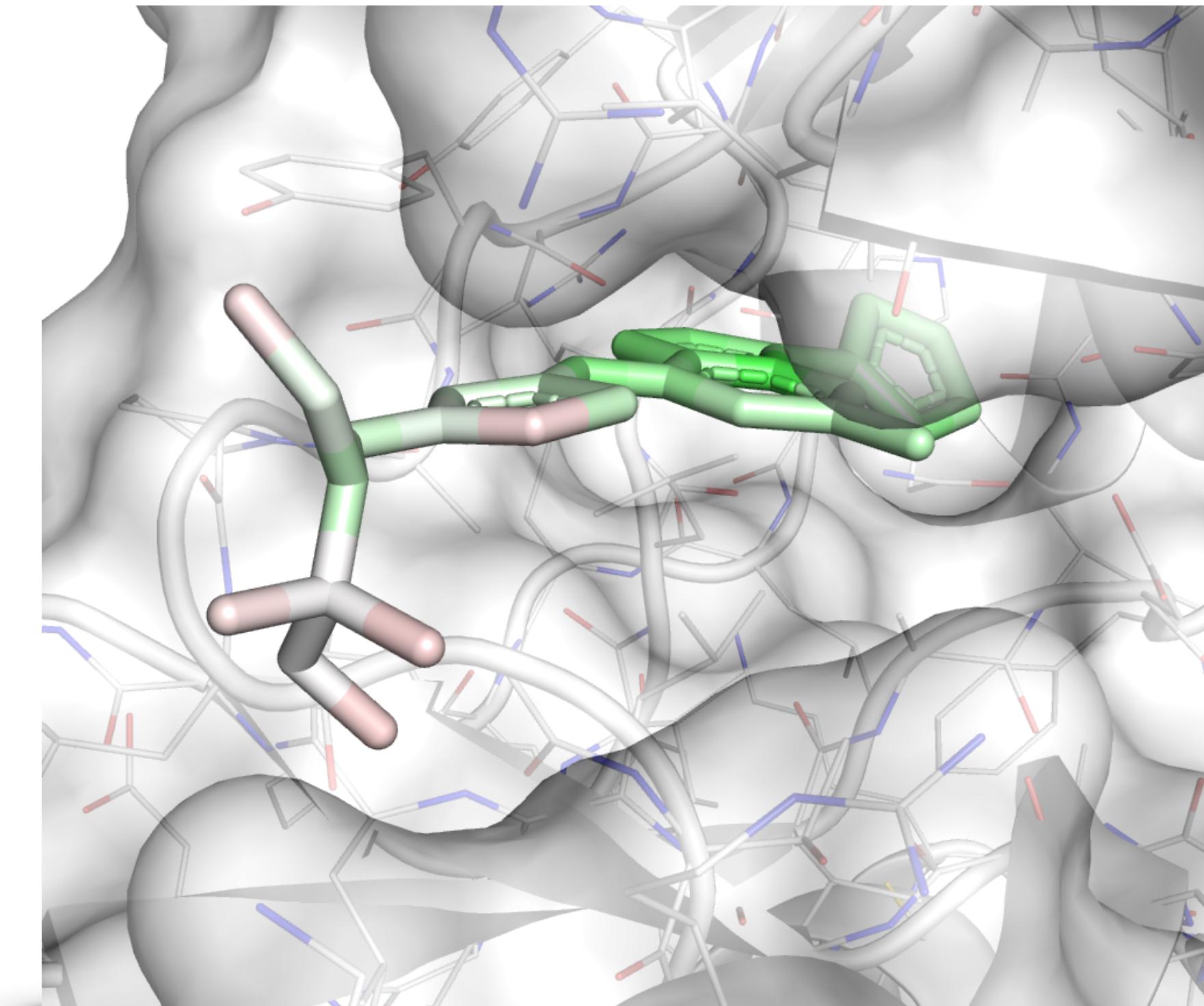
Pose Prediction

Binding Discrimination

Affinity Prediction



Virtual Screening

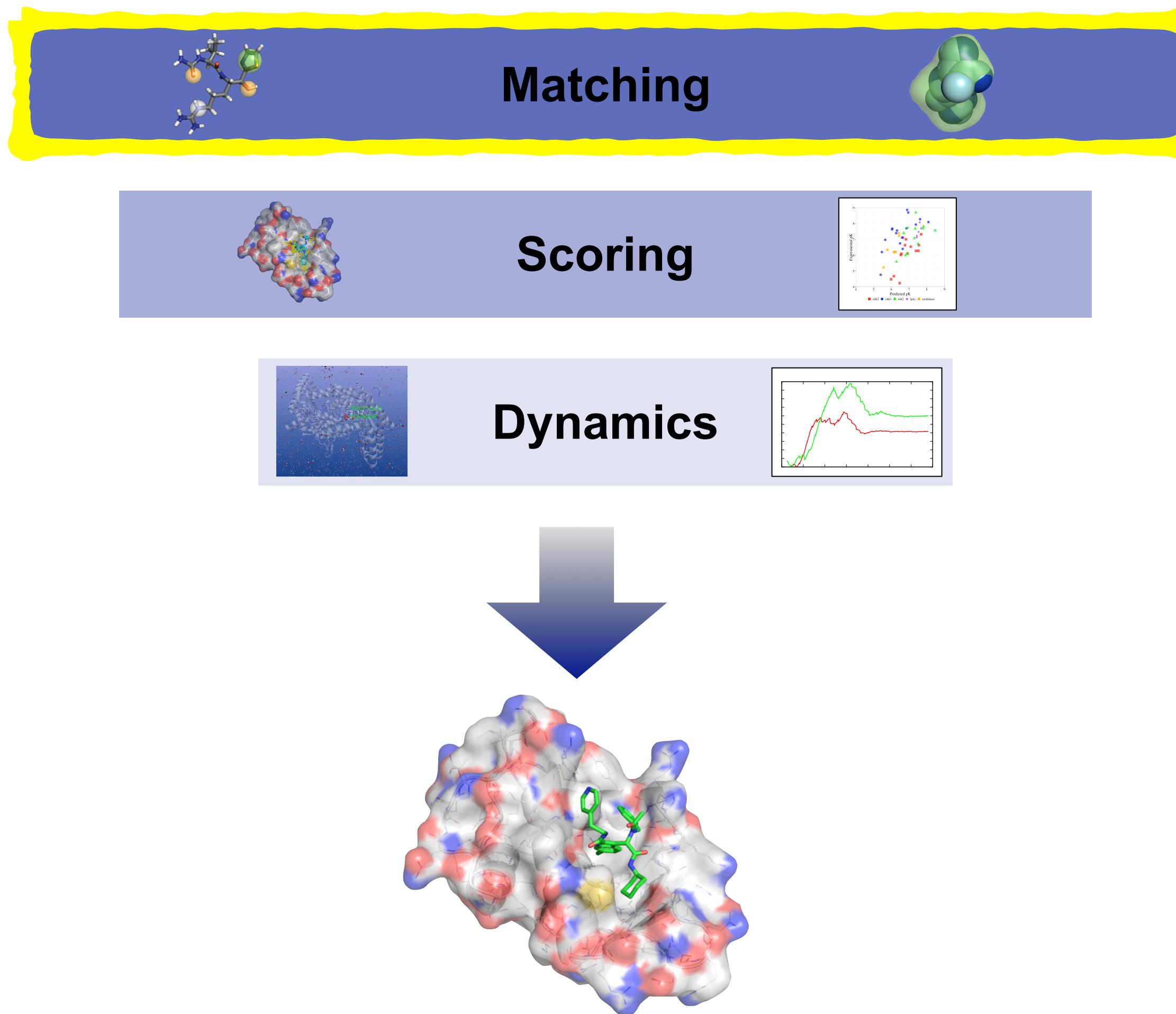
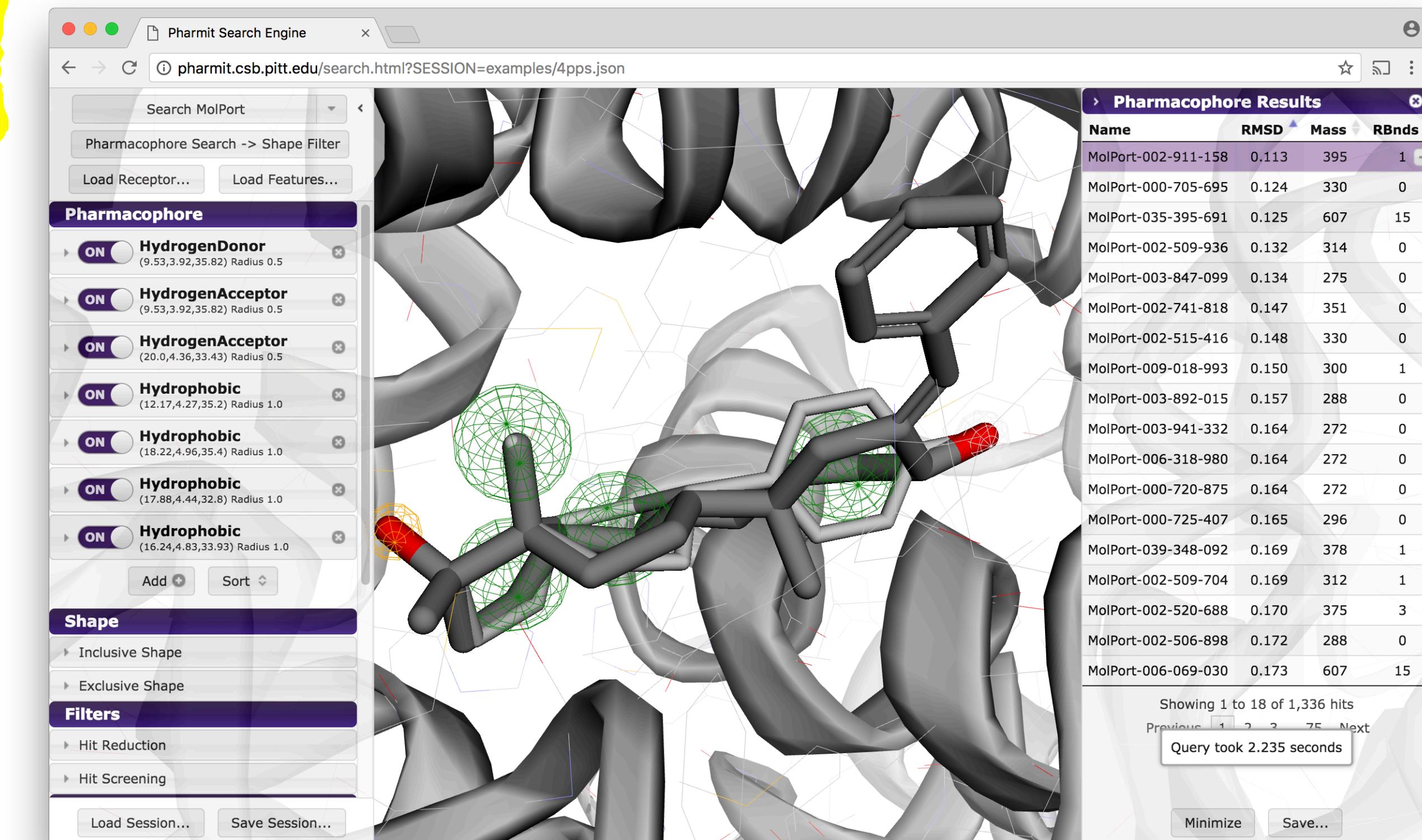


Lead Optimization

Purchasable

Accessible

Drug Discovery Funnel

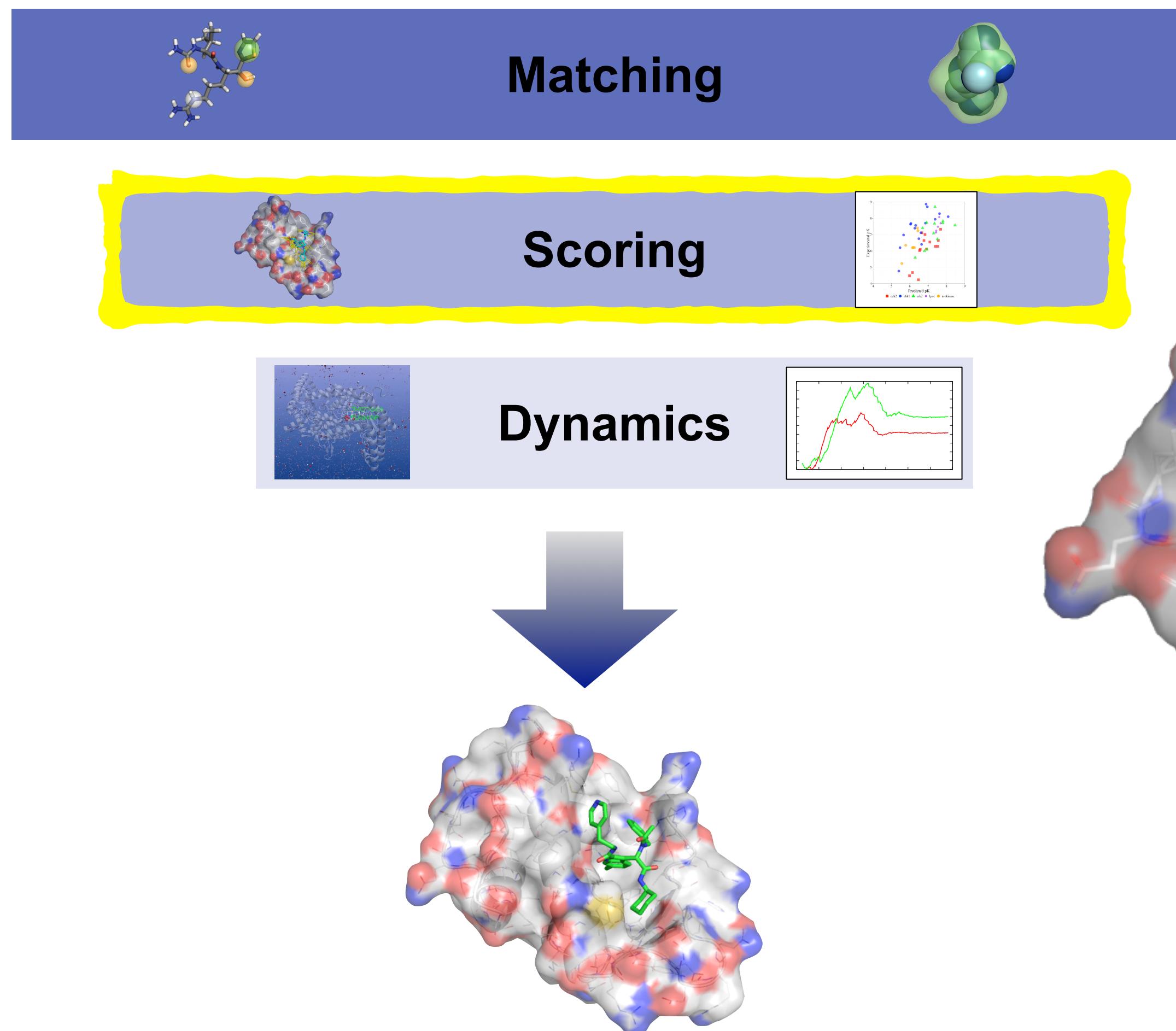
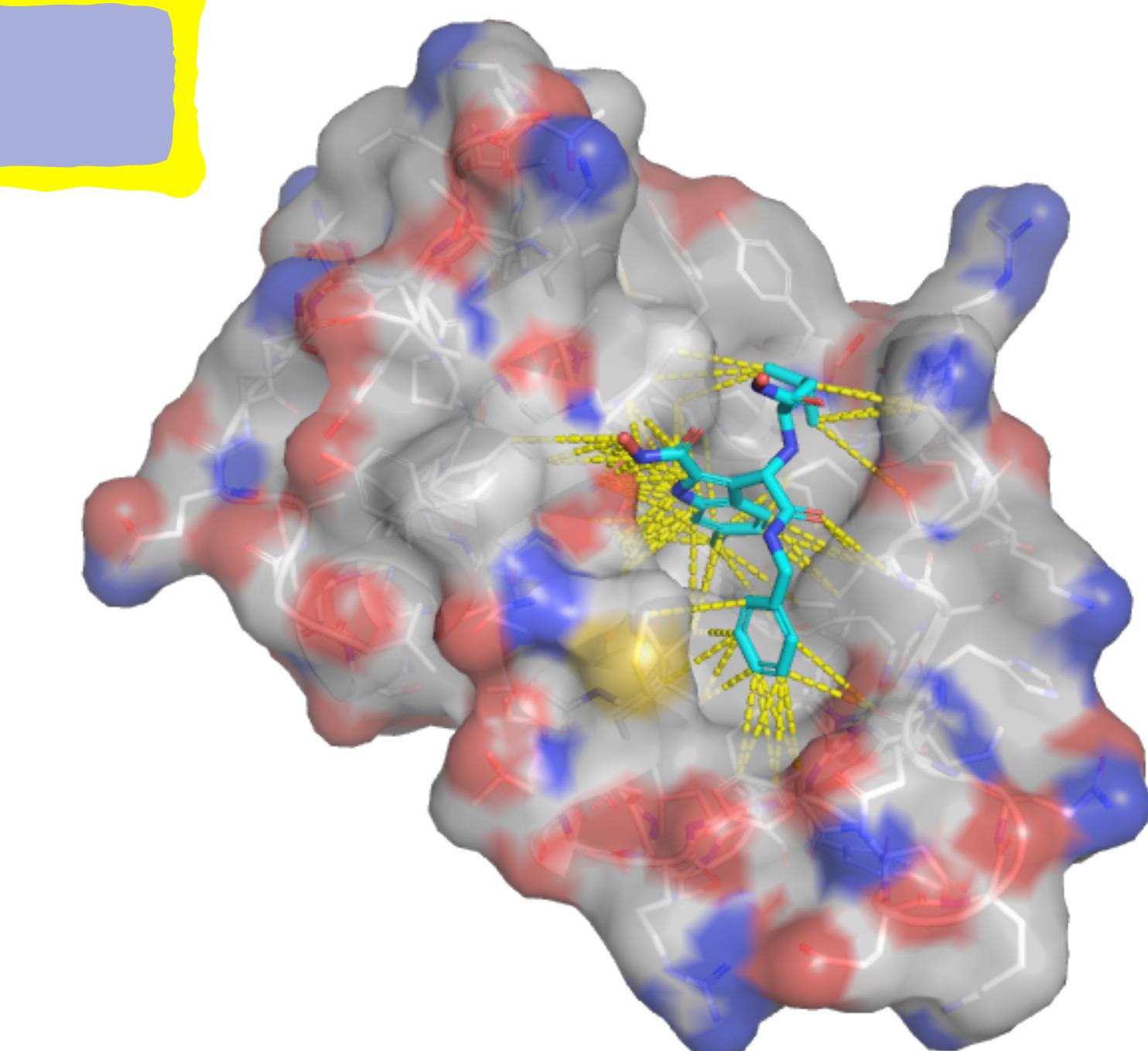


<http://pharmit.csb.pitt.edu>

Purchasable

Accessible

Drug Discovery Funnel



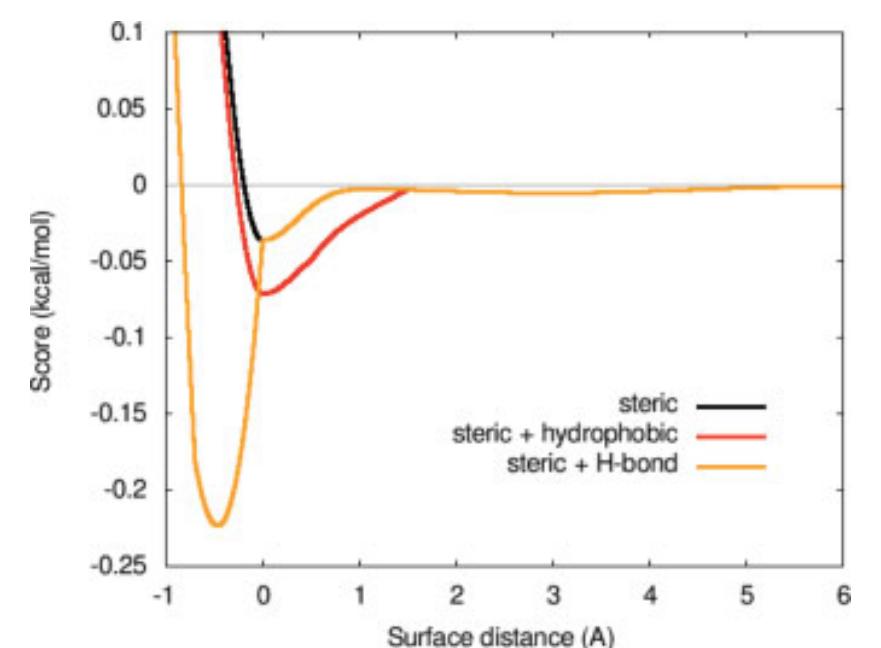
$$\text{gauss}_1(d) = w_{\text{gauss}_1} e^{-(d/0.5)^2}$$

$$\text{gauss}_2(d) = w_{\text{gauss}_2} e^{-((d-3)/2)^2}$$

$$\text{repulsion}(d) = \begin{cases} w_{\text{repulsion}} d^2 & d < 0 \\ 0 & d \geq 0 \end{cases}$$

$$\text{hydrophobic}(d) = \begin{cases} w_{\text{hydrophobic}} & d < 0.5 \\ 0 & d > 1.5 \\ w_{\text{hydrophobic}}(1.5 - d) & \text{otherwise} \end{cases}$$

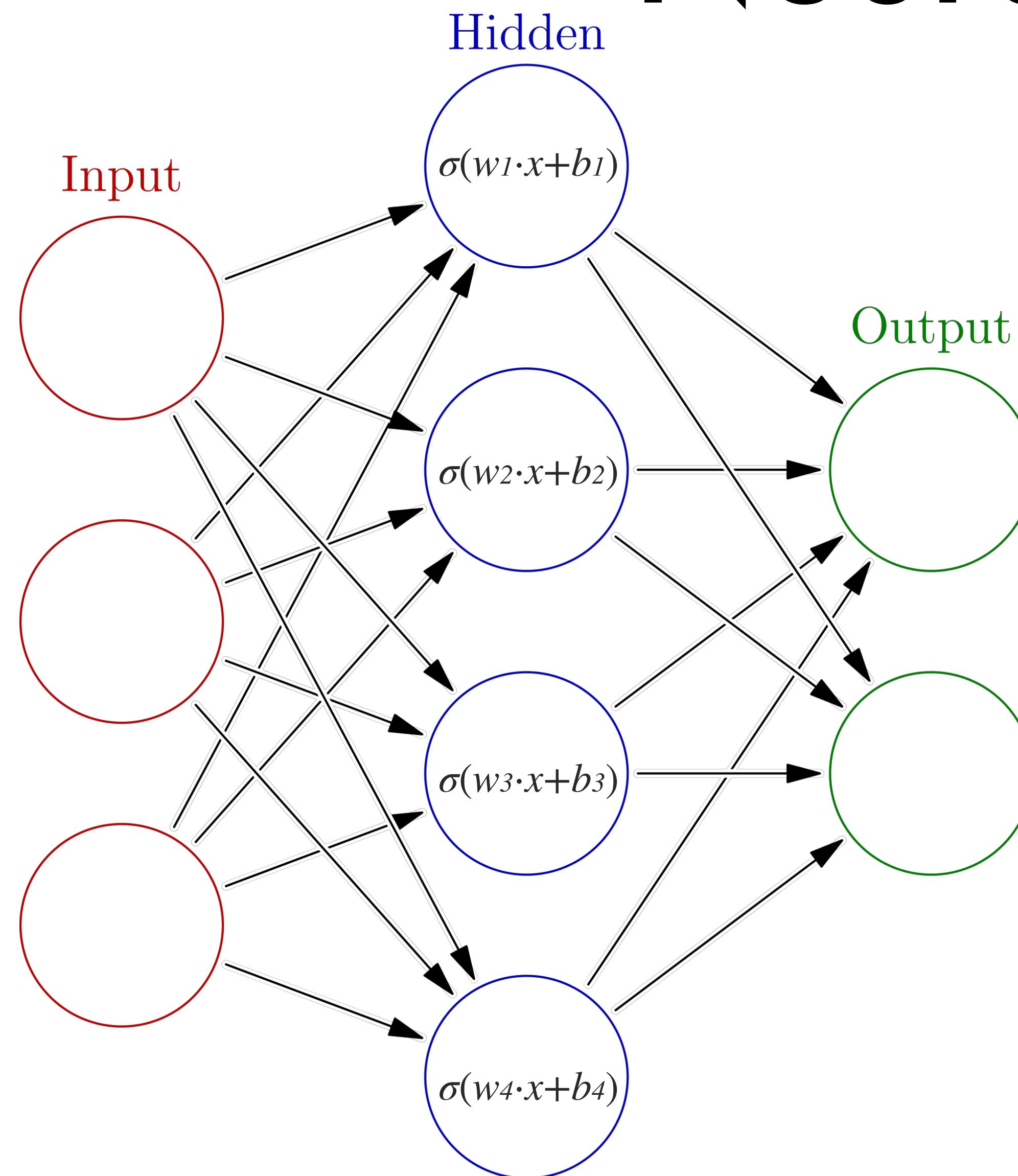
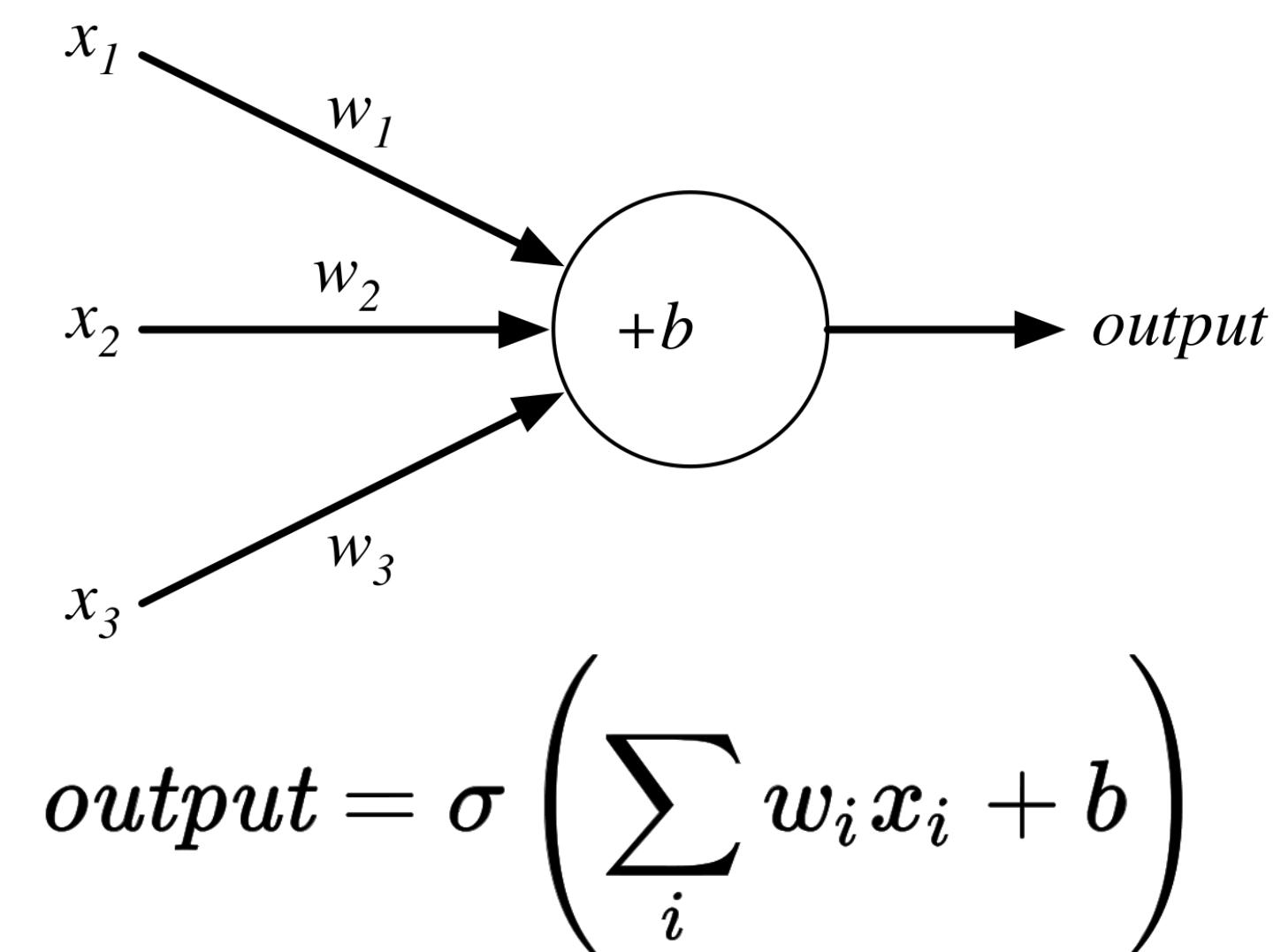
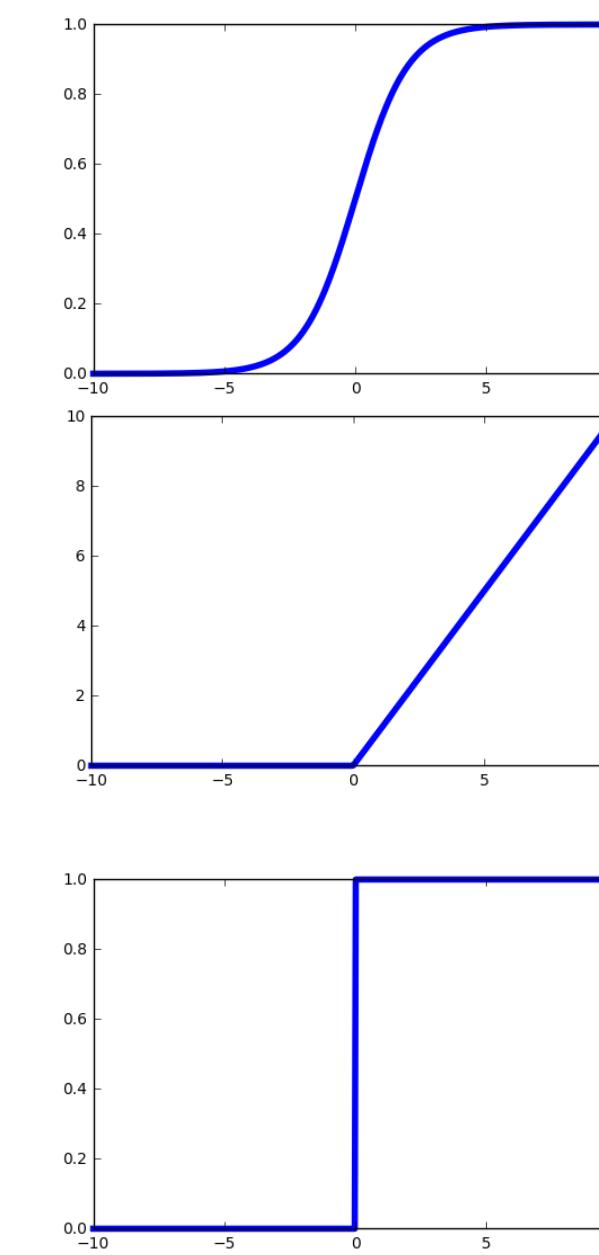
$$\text{hbond}(d) = \begin{cases} w_{\text{hbond}} & d < -0.7 \\ 0 & d > 0 \\ w_{\text{hbond}}(-\frac{10}{7}d) & \text{otherwise} \end{cases}$$



O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, *Journal of Computational Chemistry* 31 (2010) 455-461

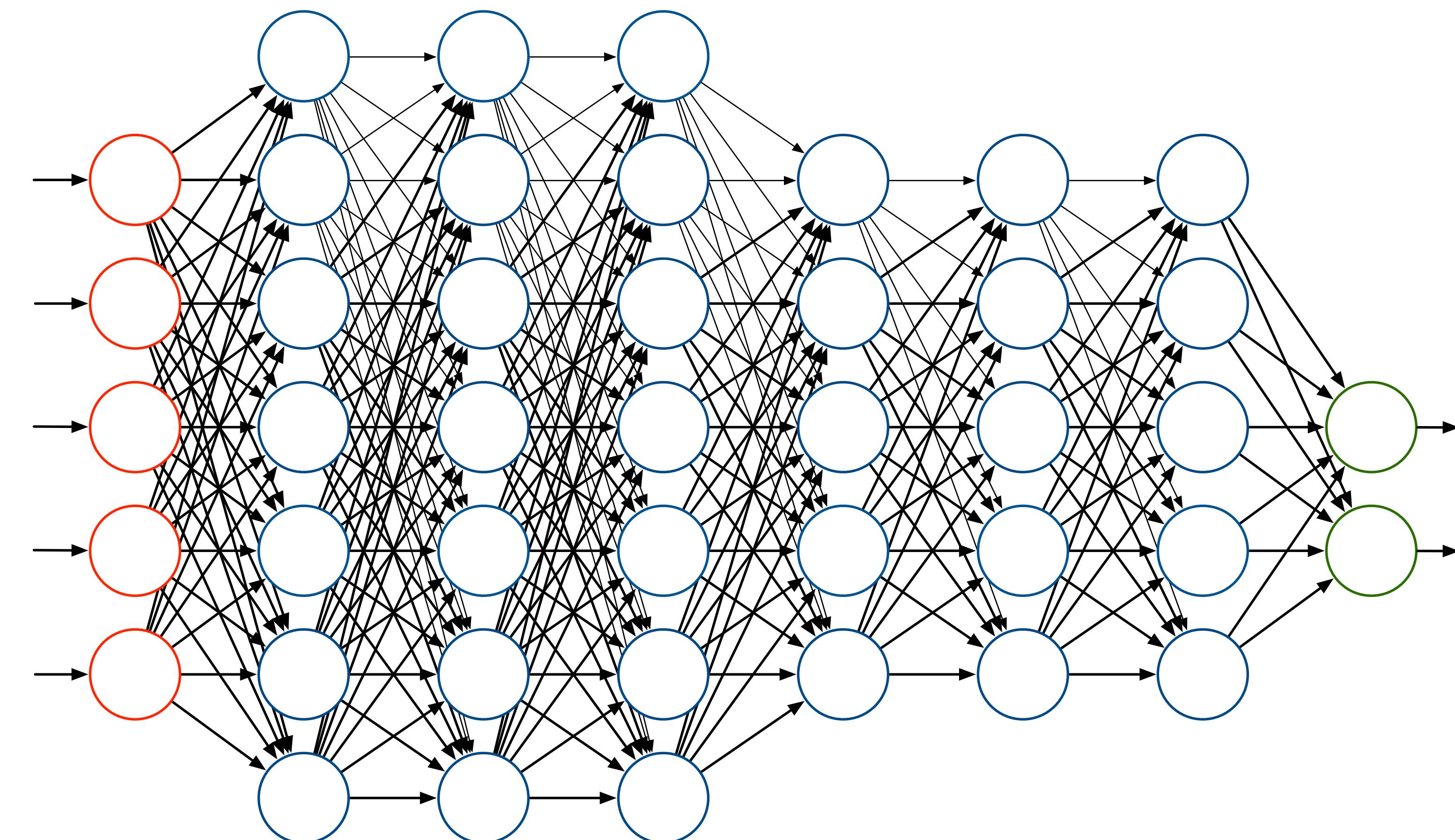
Protein-Ligand Scoring

Neural Networks

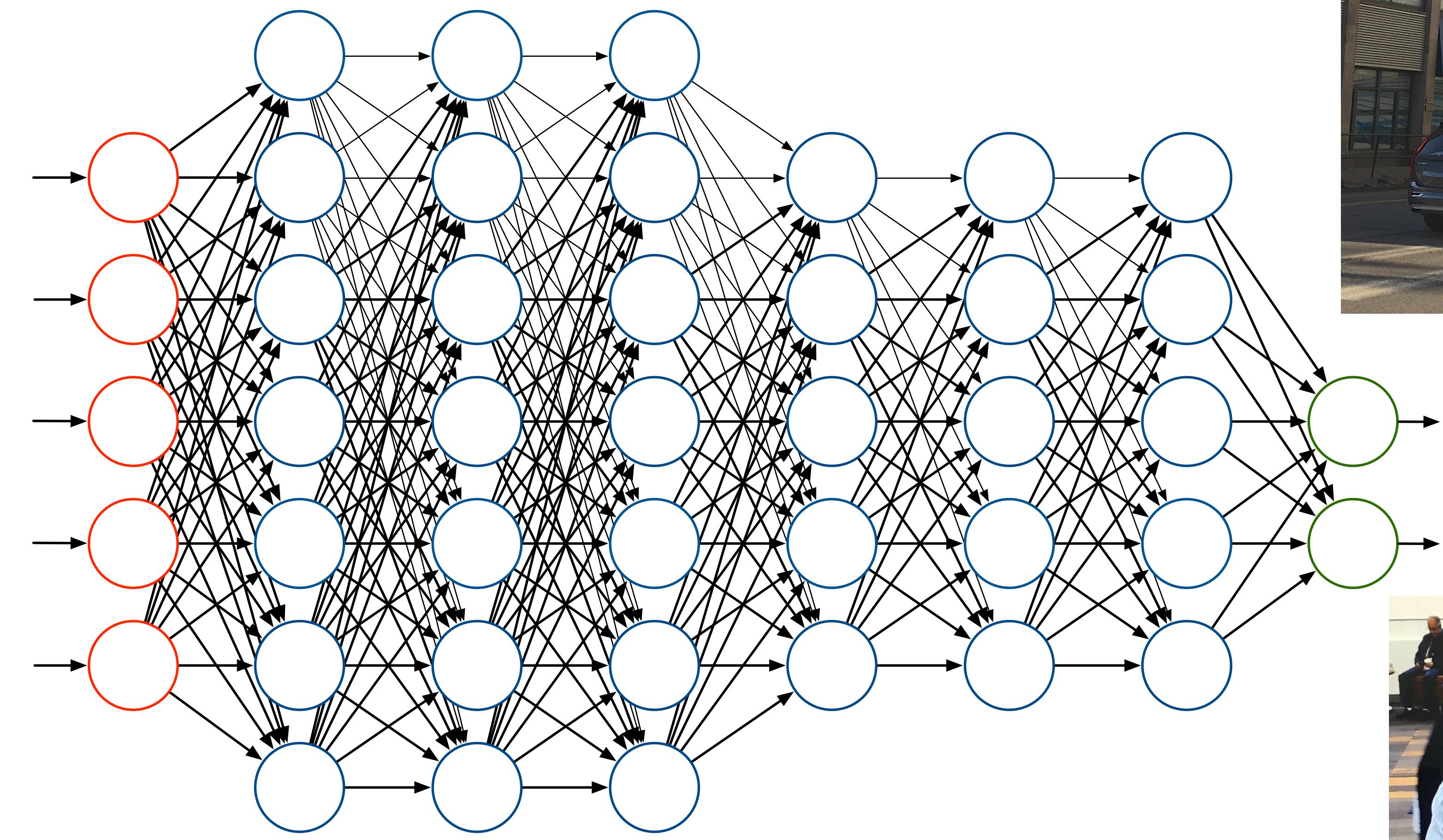
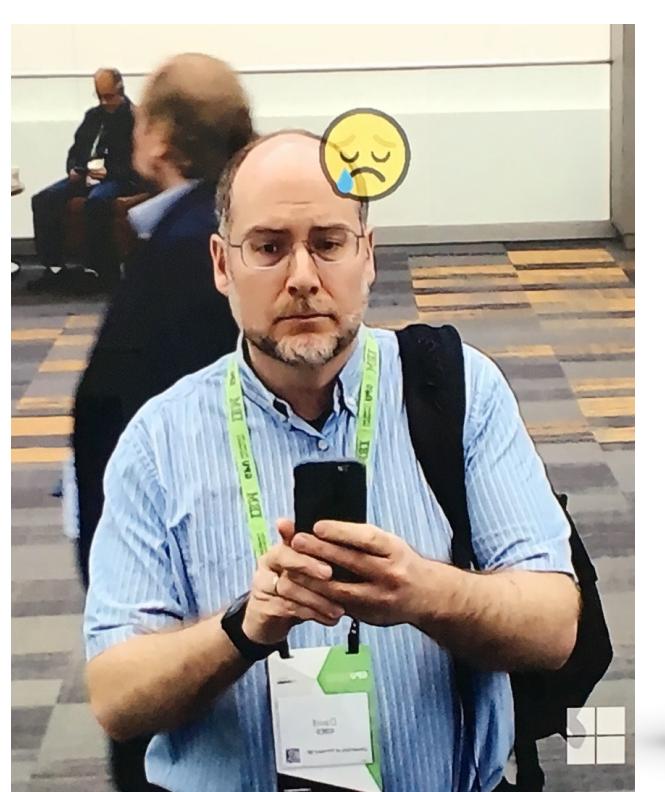


The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

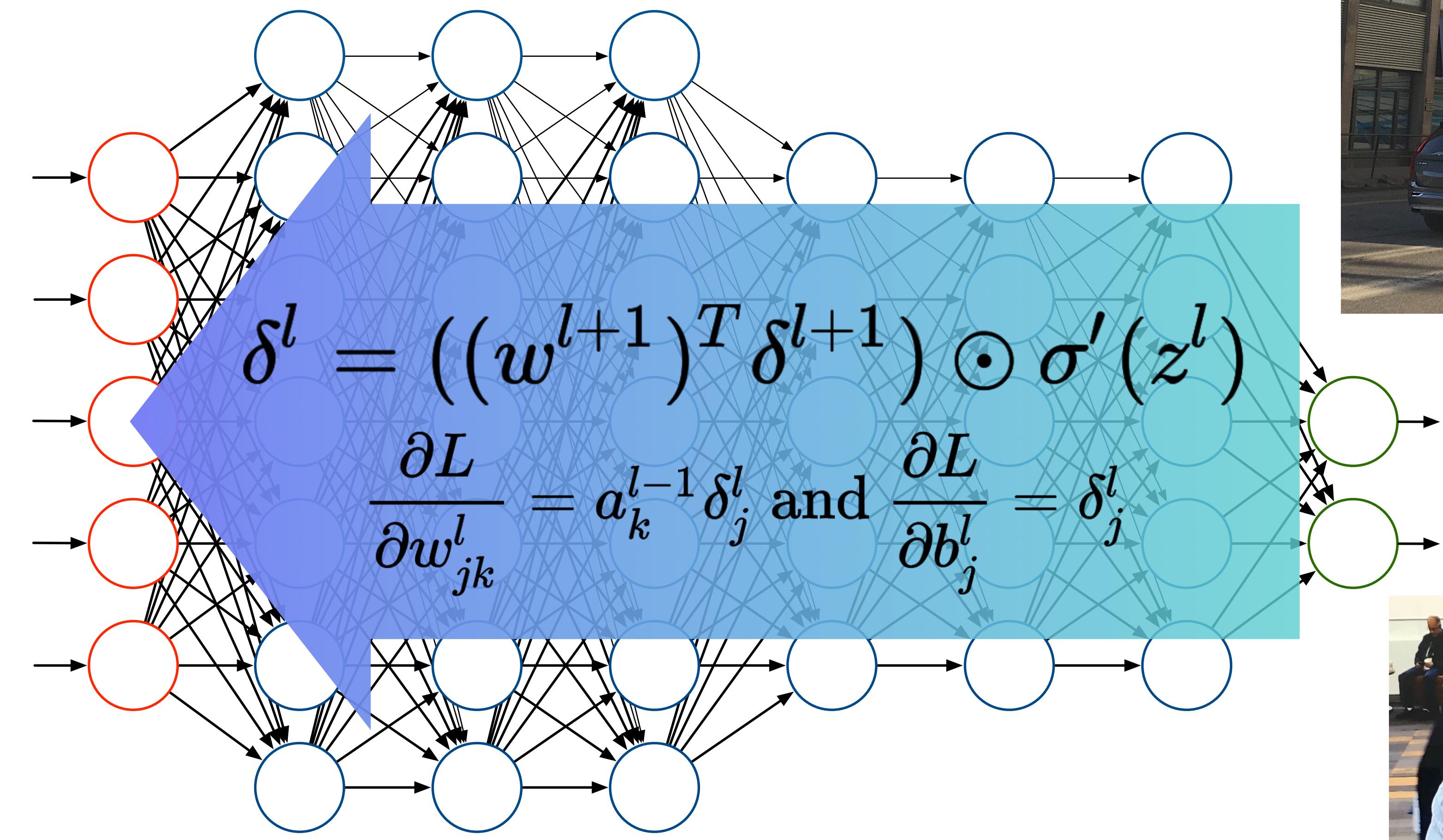
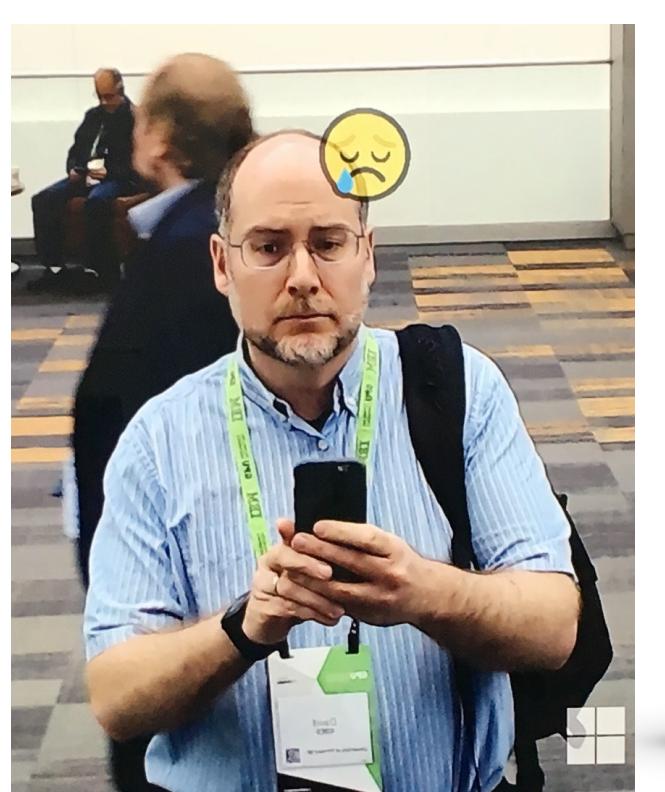
Deep Learning



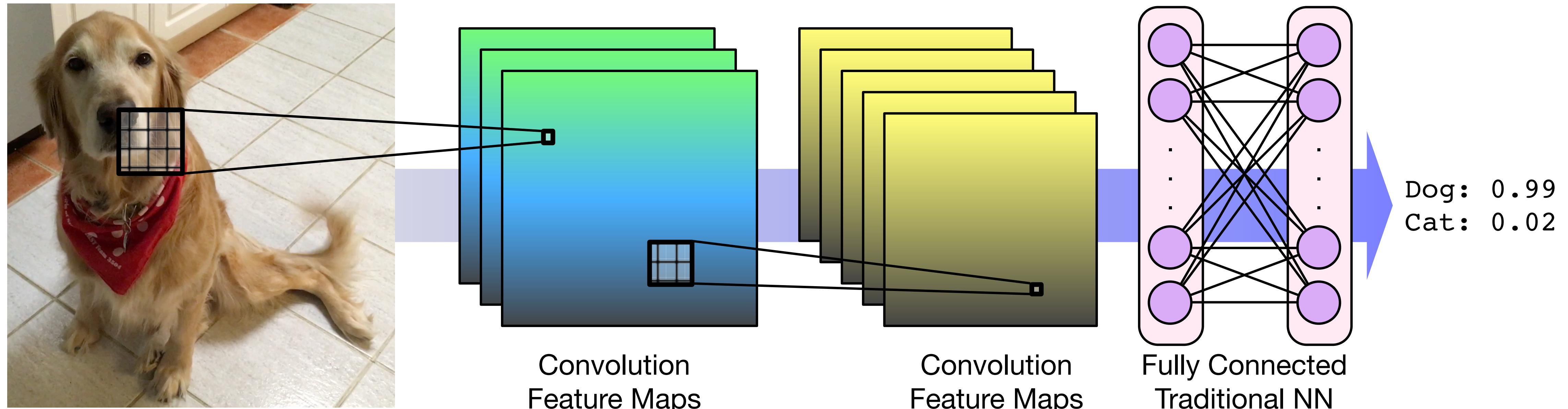
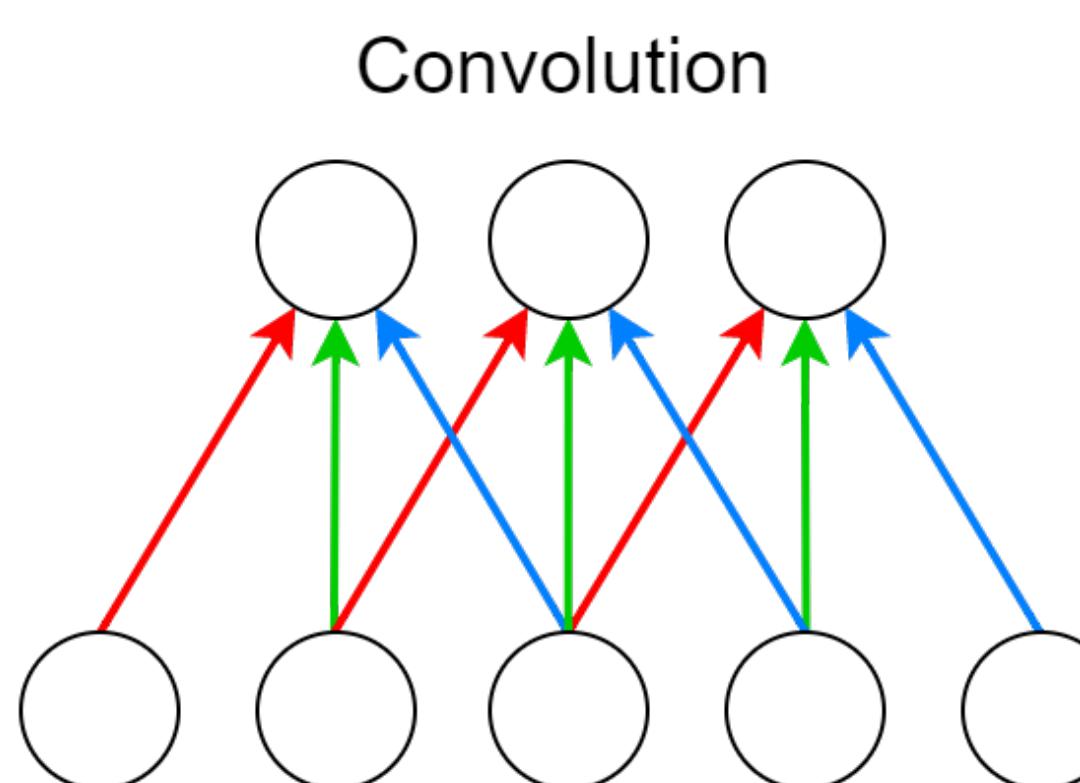
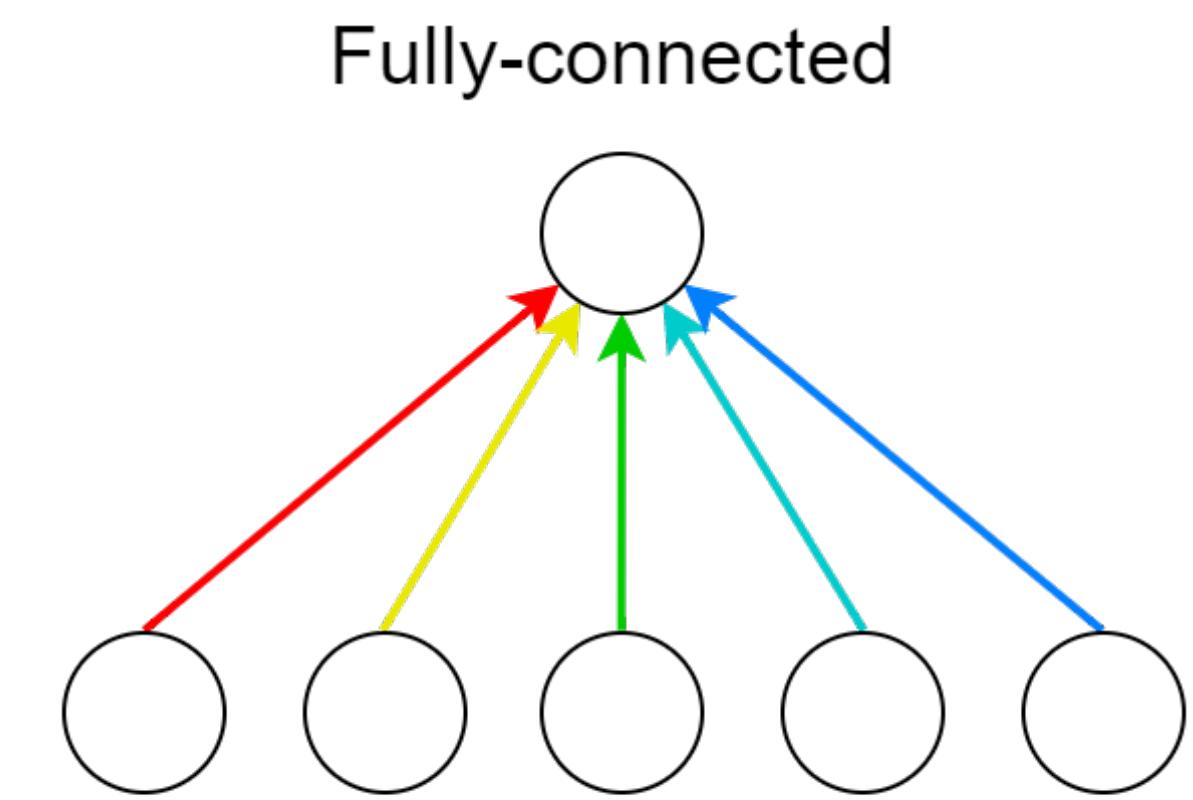
Deep Learning



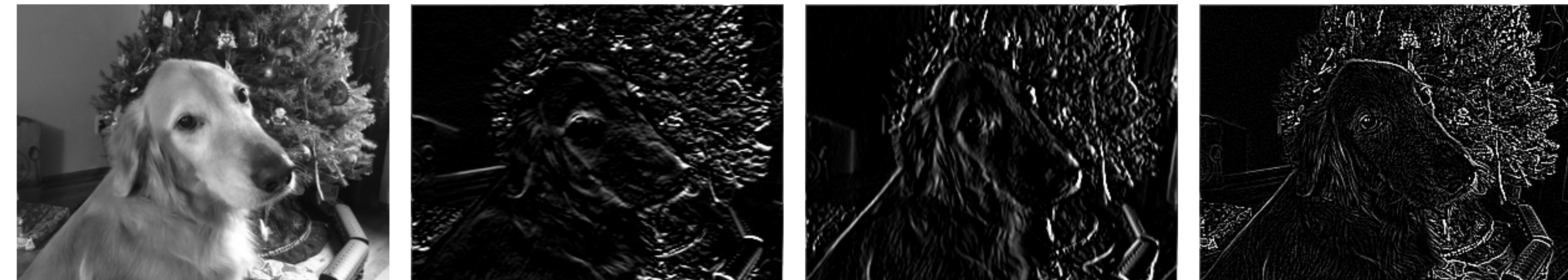
Deep Learning



Convolutional Neural Networks



Convolutional Filters

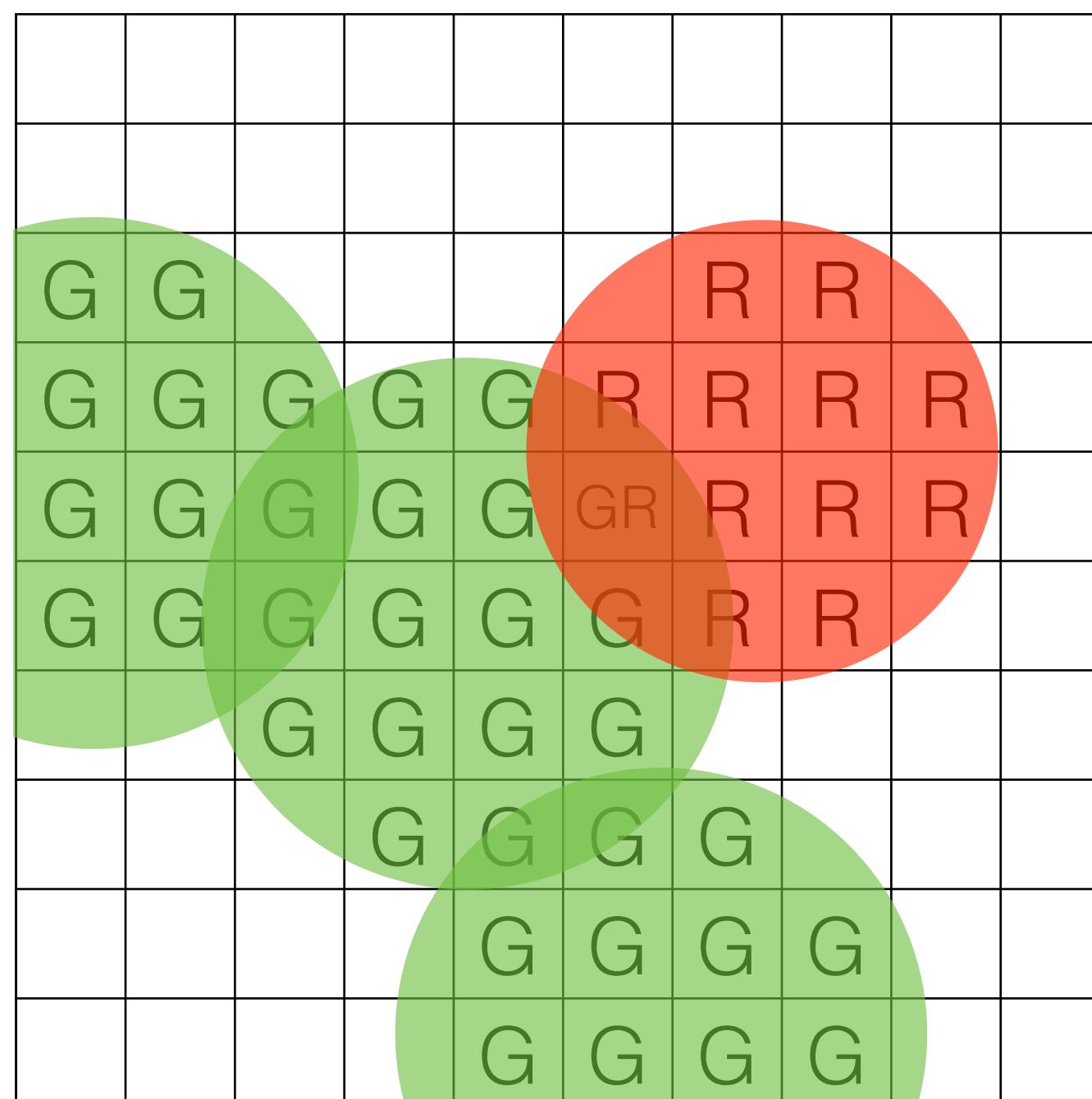


$$\begin{array}{ccc} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

$$\begin{array}{ccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array}$$

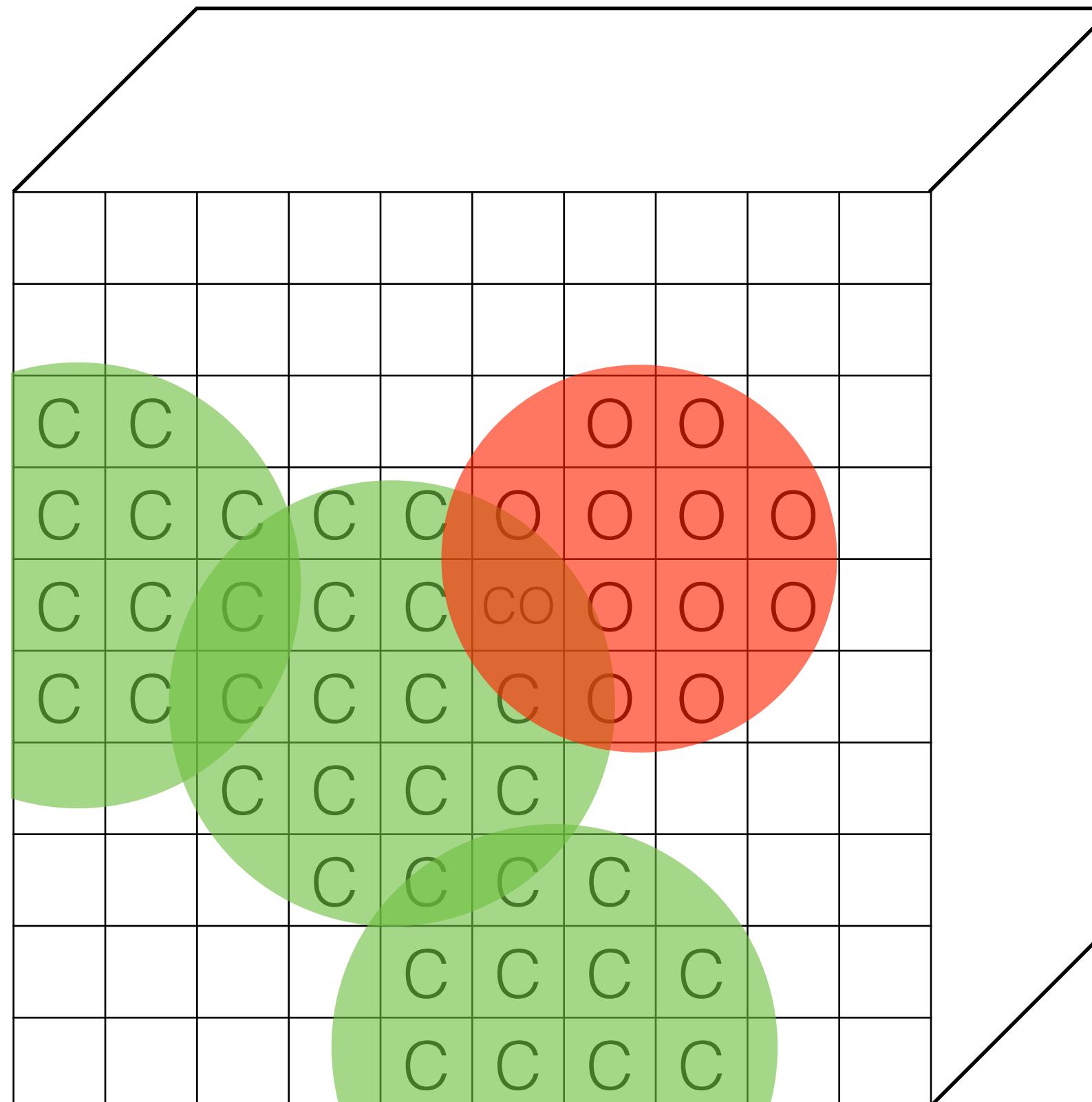
$$\begin{array}{ccc} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{array}$$

Protein-Ligand Representation



(R,G,B) pixel

Protein-Ligand Representation



(R,G,B) pixel →
(Carbon, Nitrogen, Oxygen,...) **voxel**

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

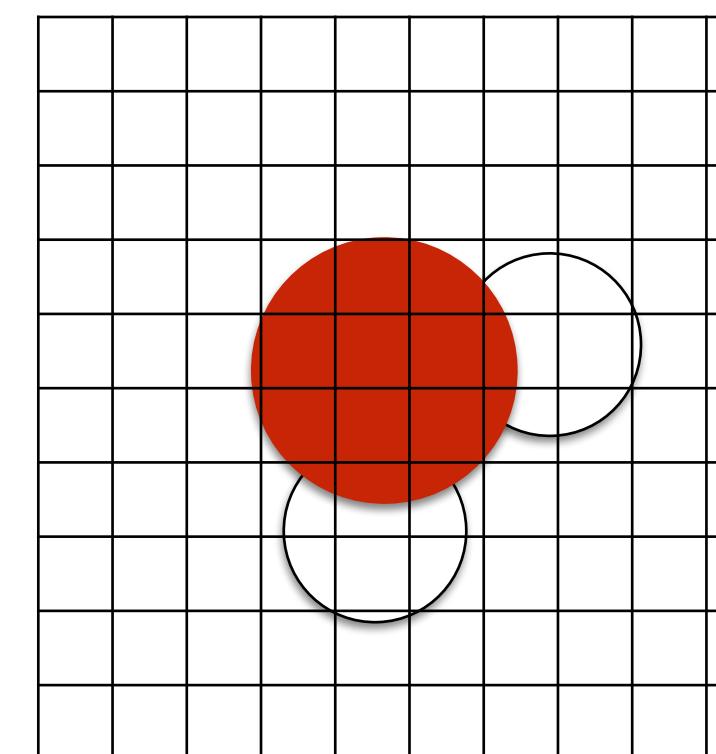
Why Grids?

Cons

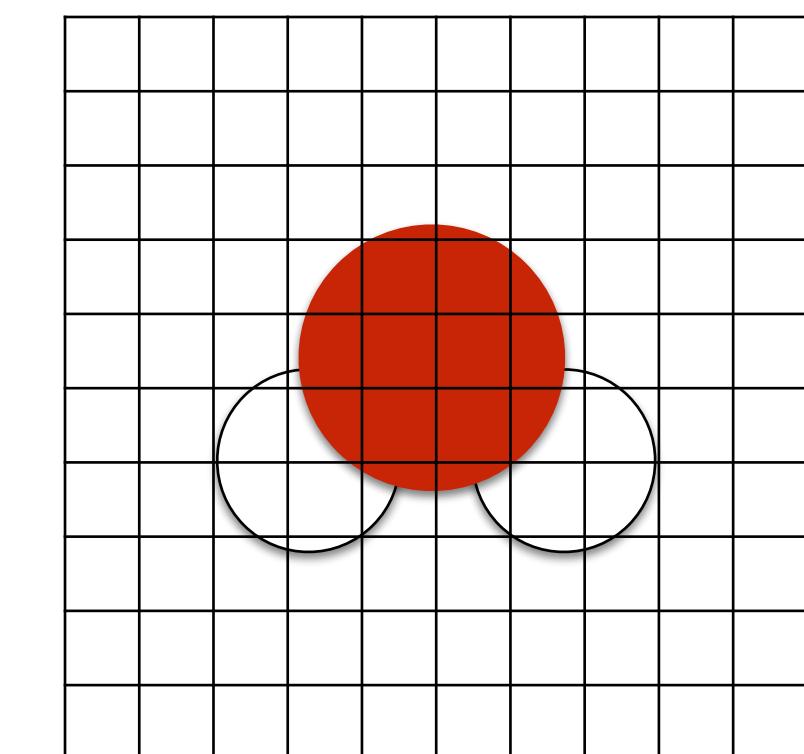
- *coordinate frame dependent*
- pairwise interactions not explicit

Pros

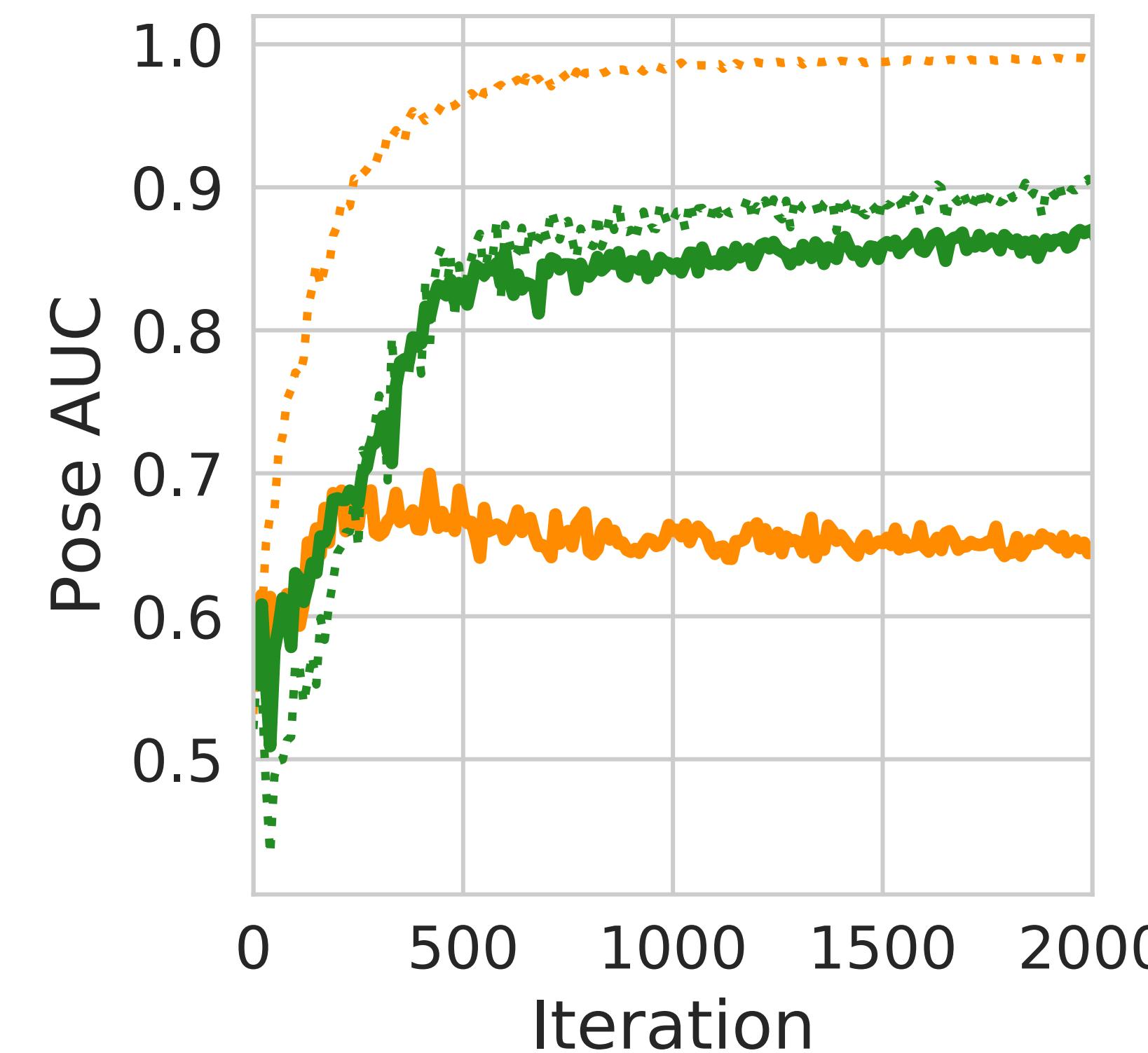
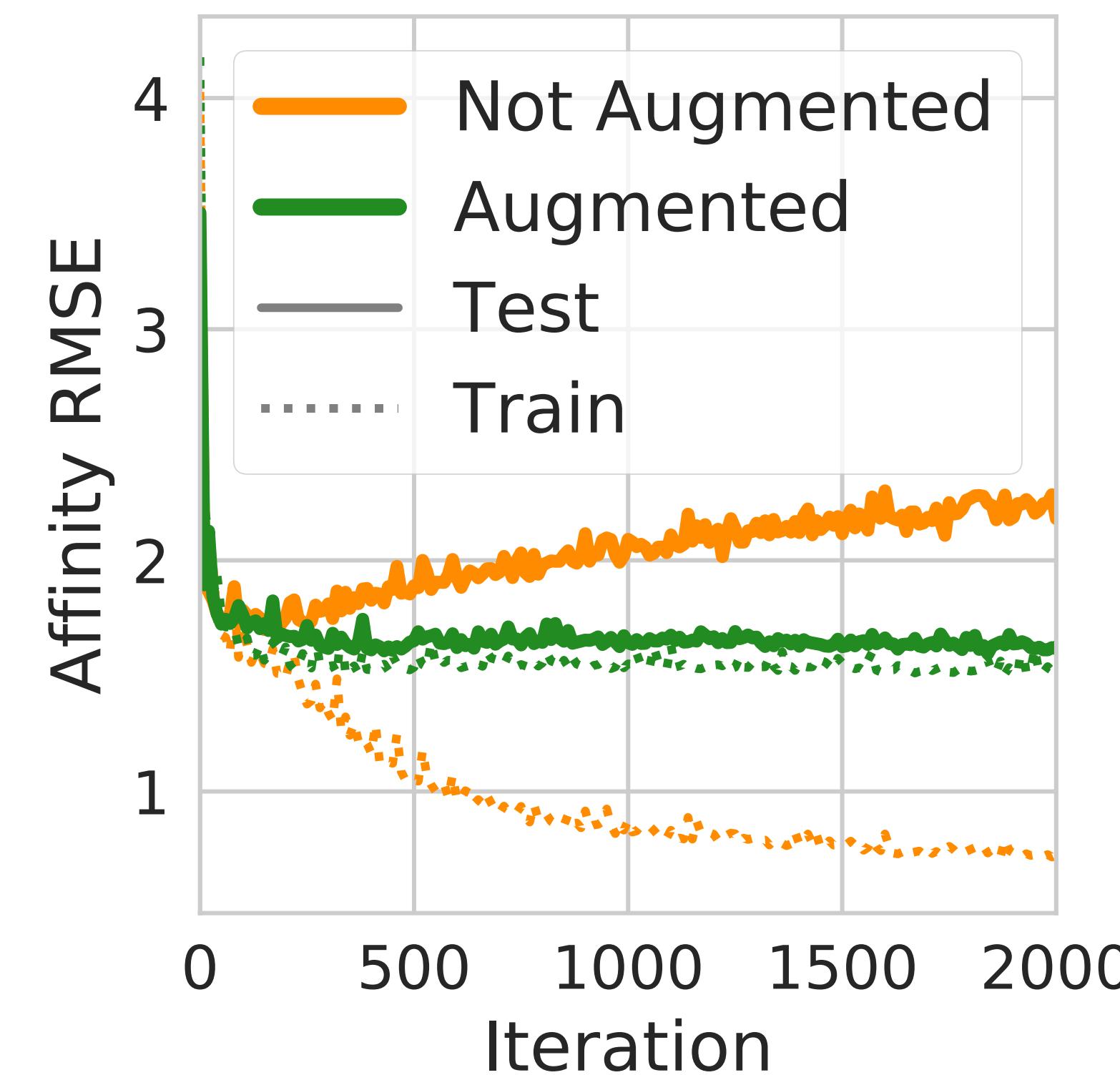
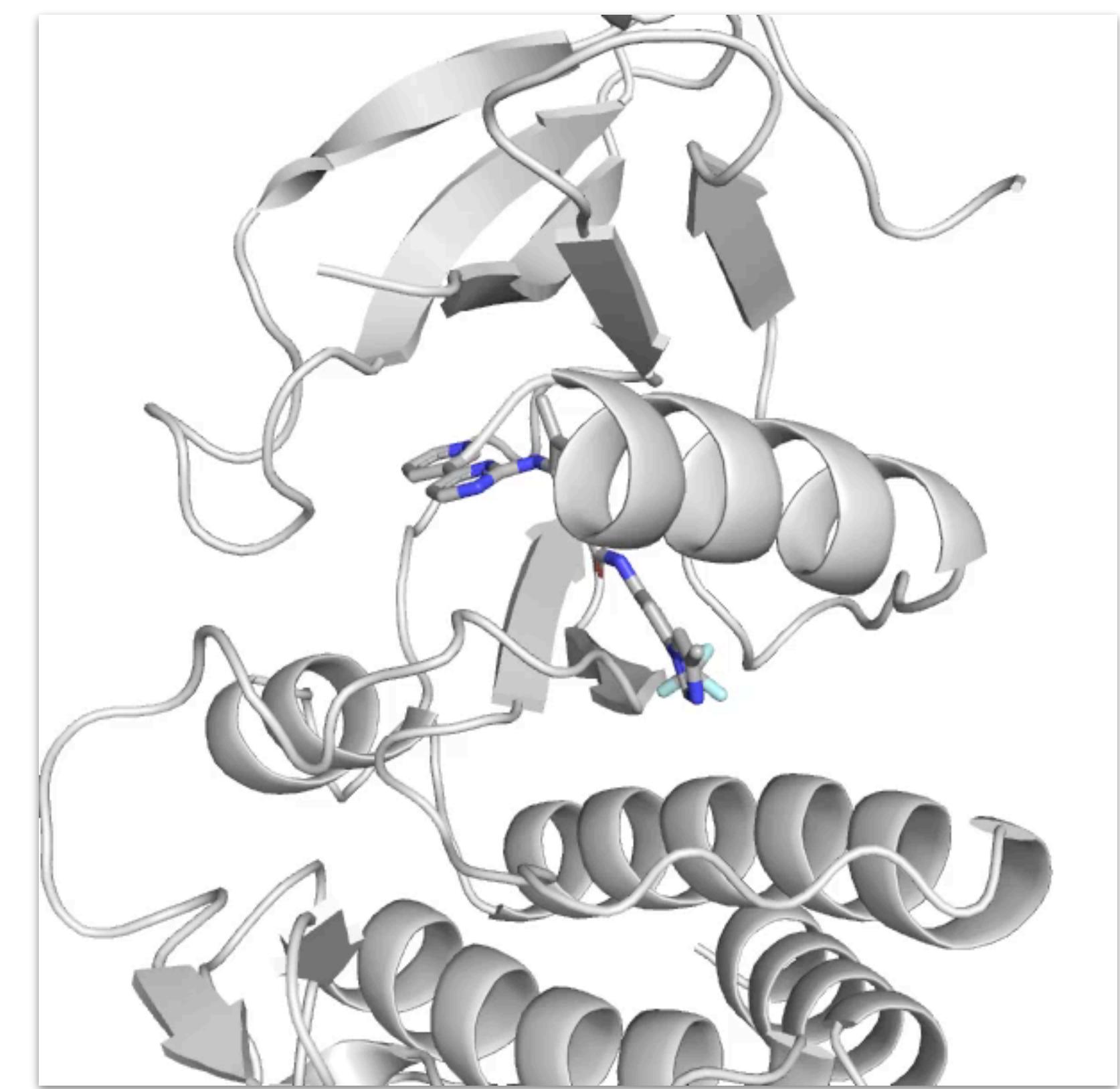
- clear spatial relationships
- amazingly parallel
- easy to interpret



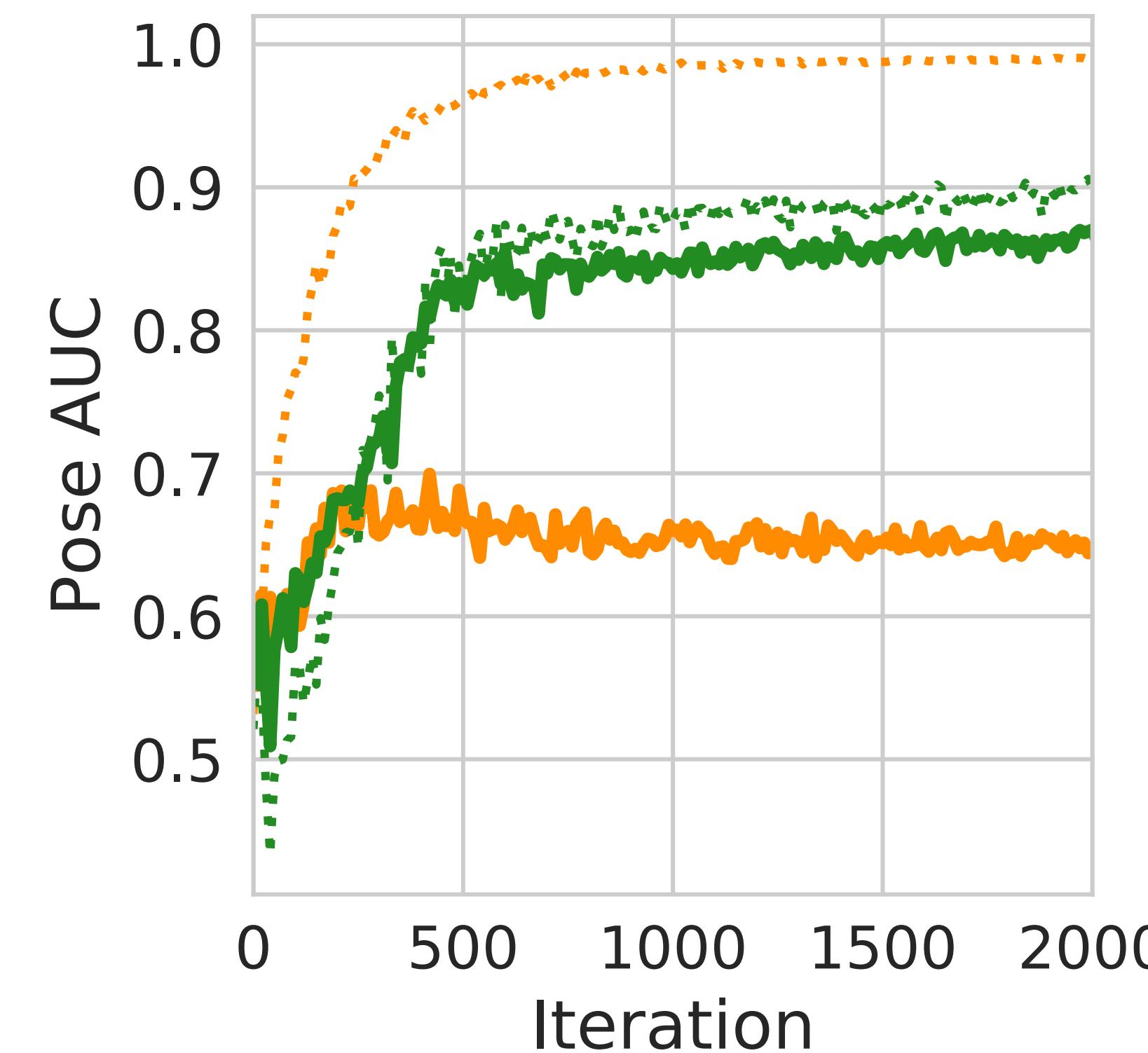
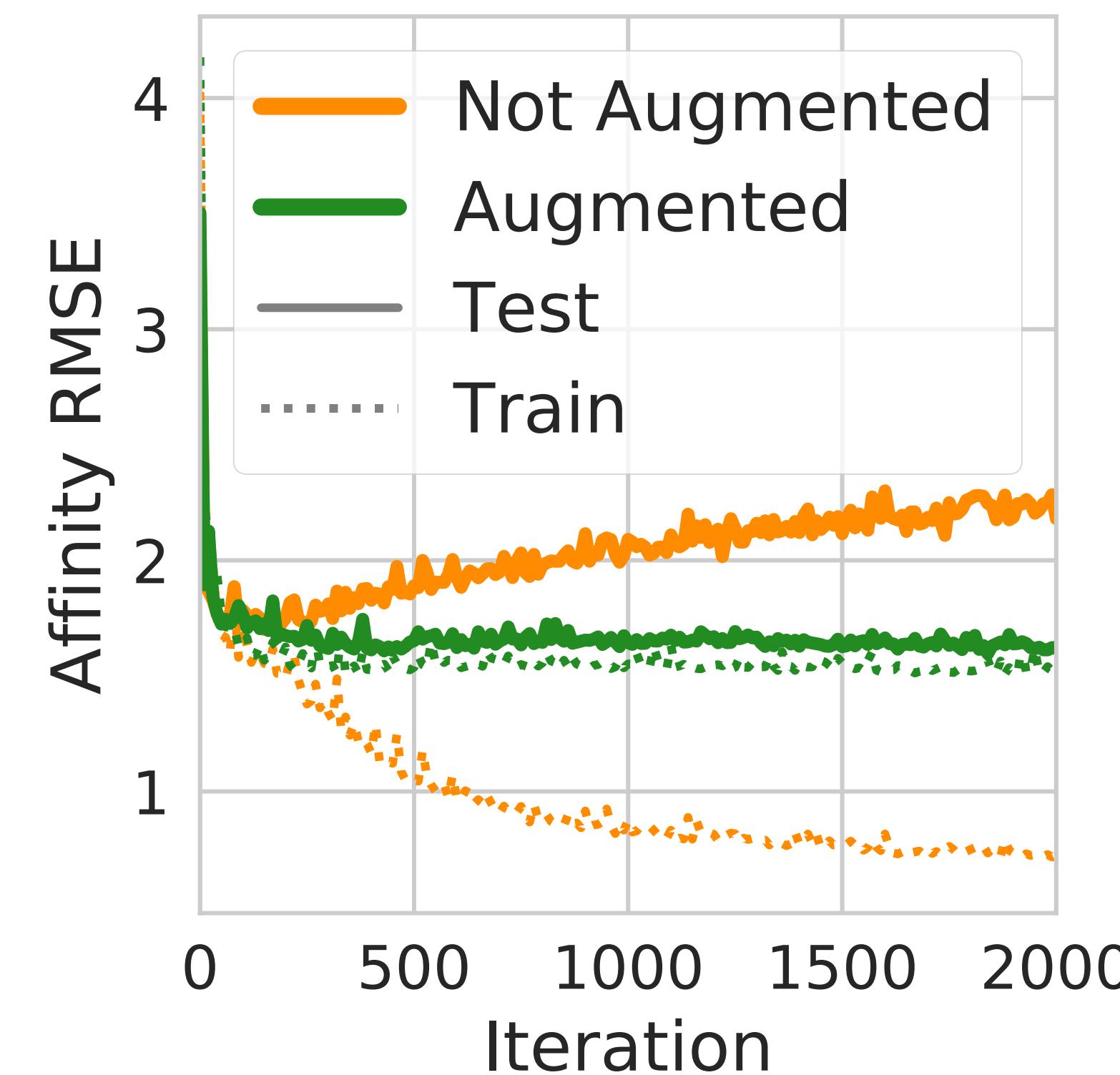
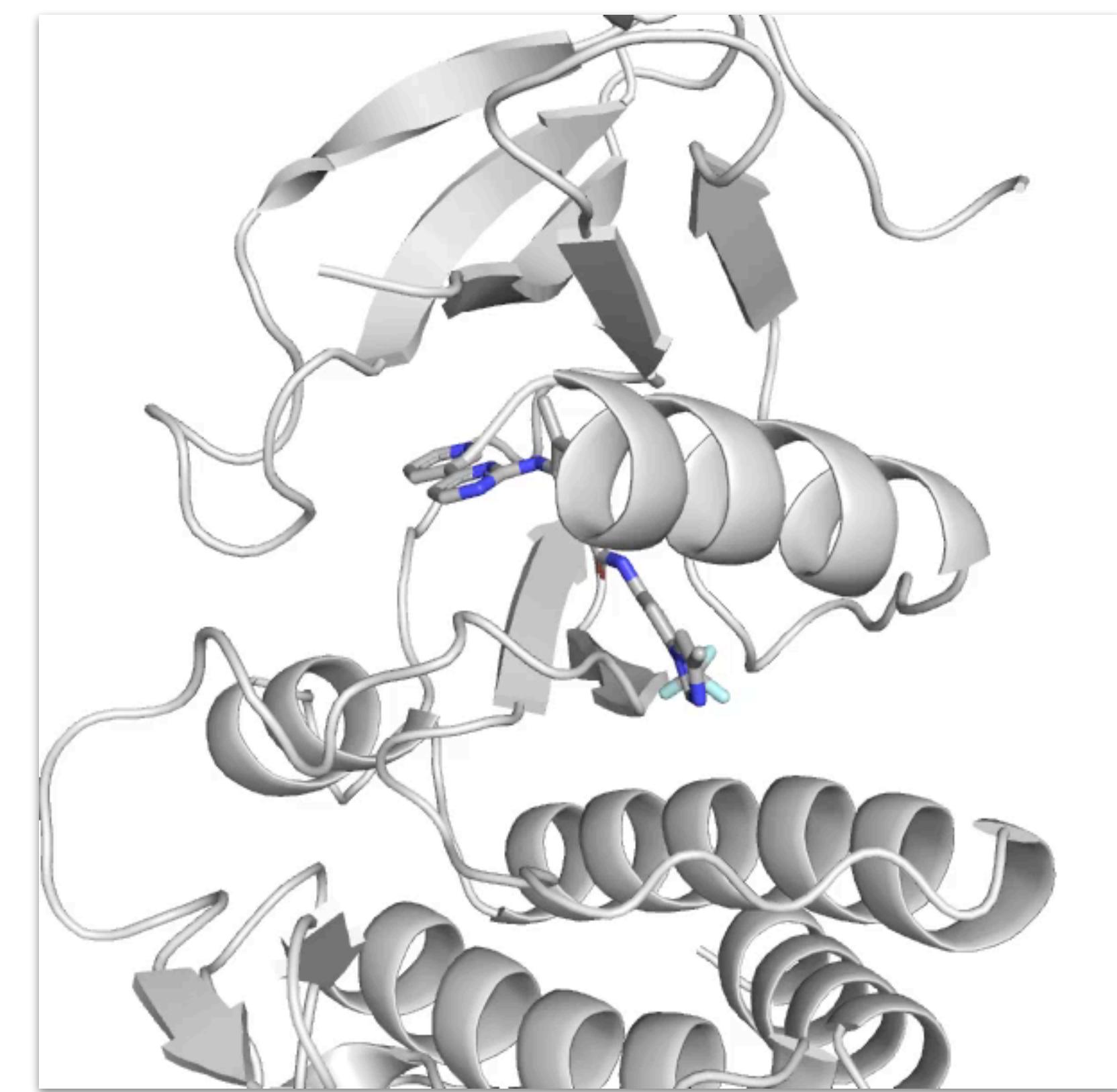
≠



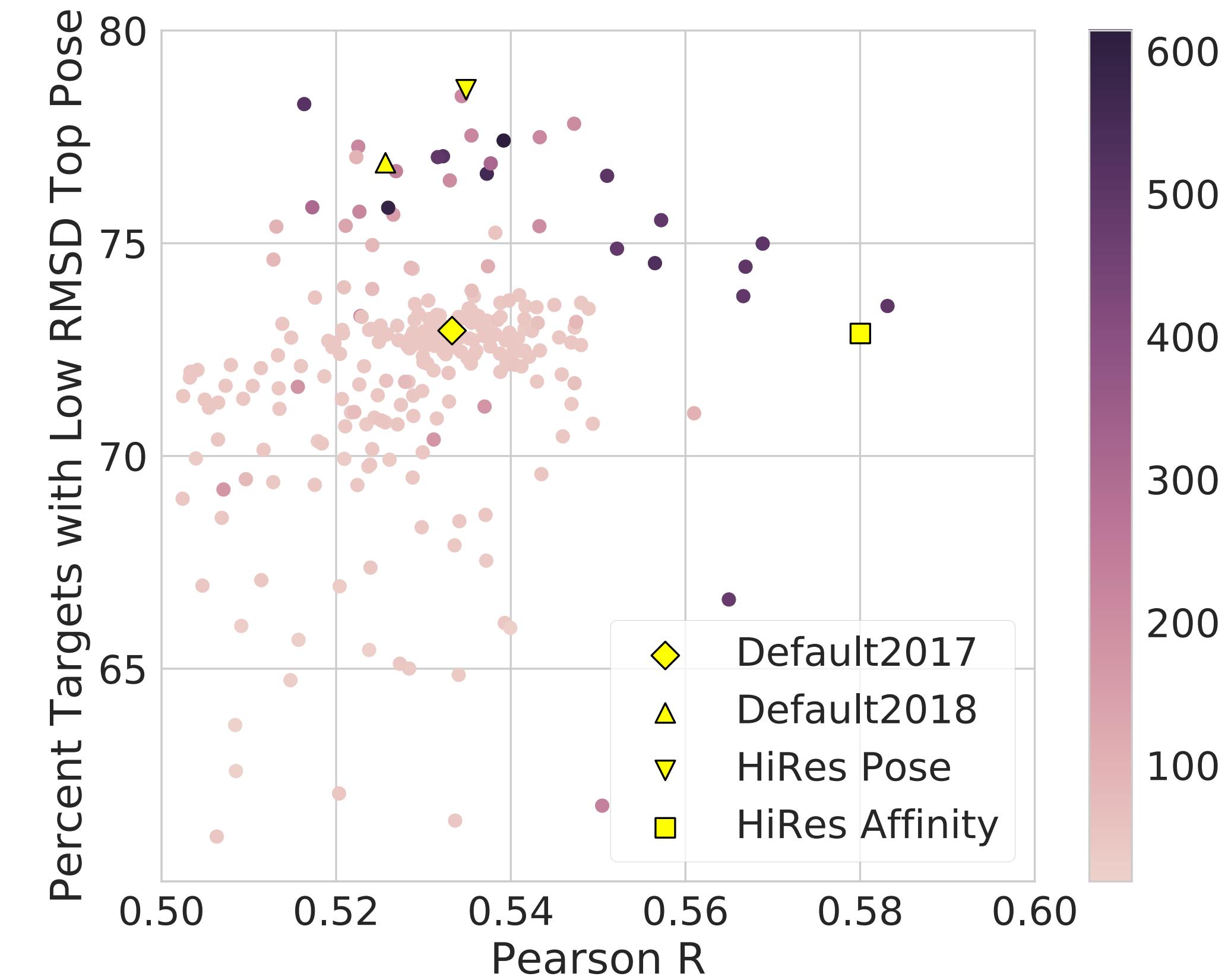
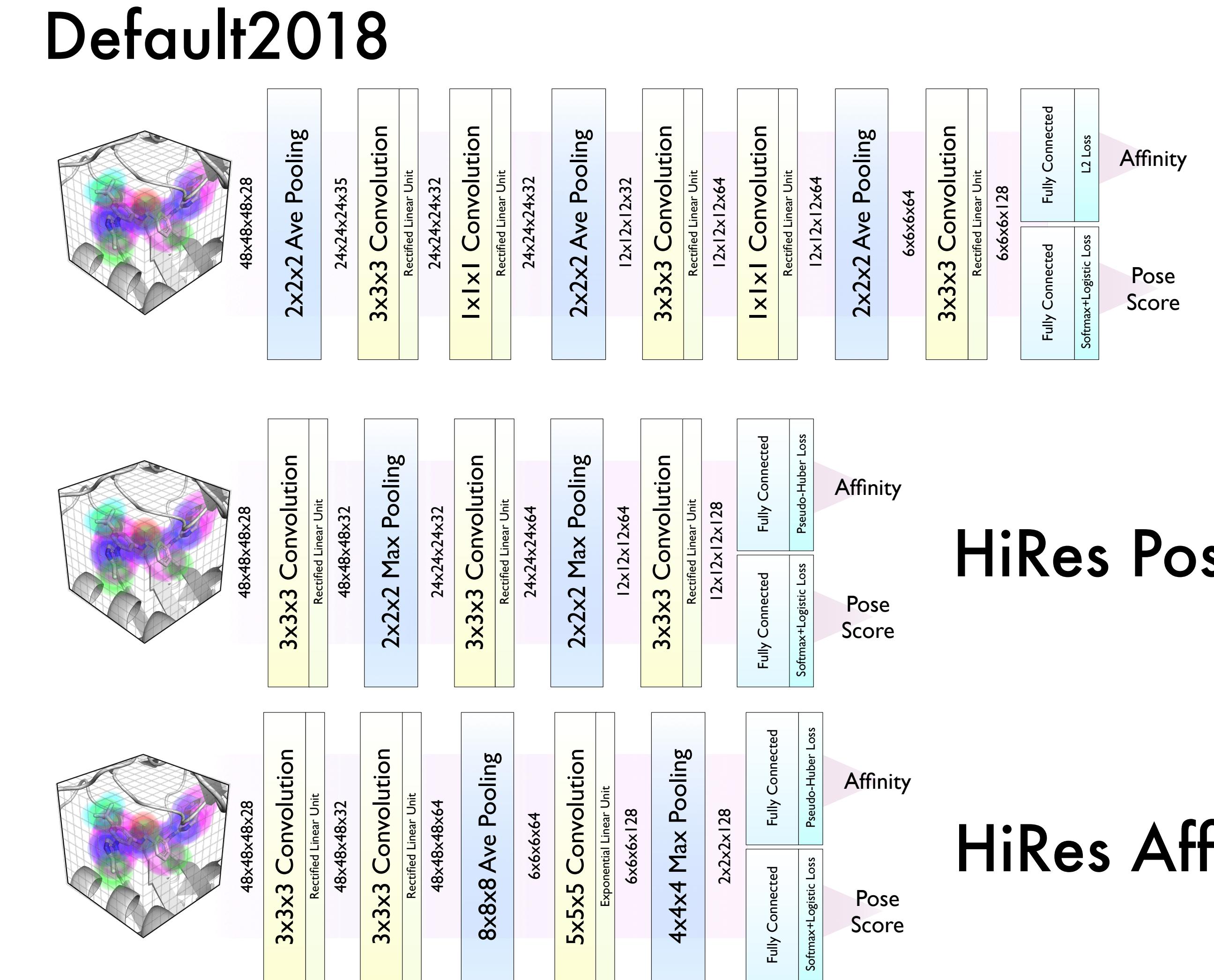
Data Augmentation



Data Augmentation



Optimized Models

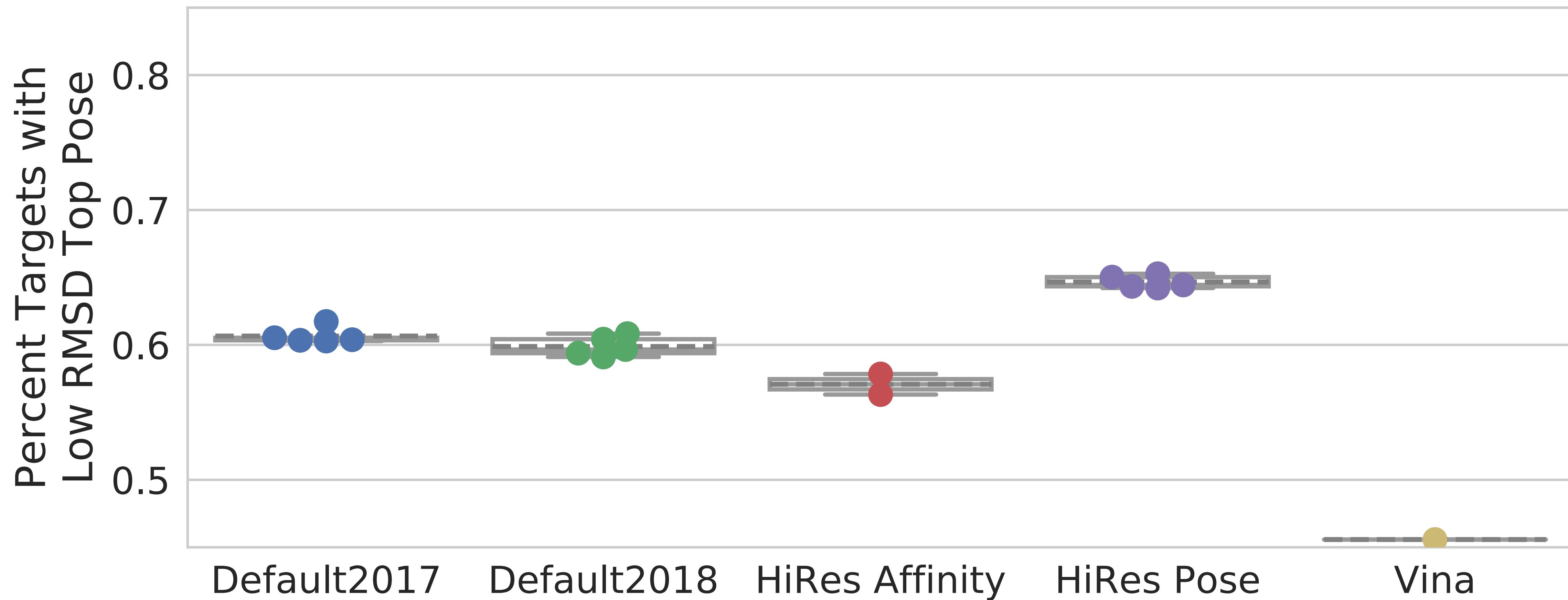


HiRes Pose

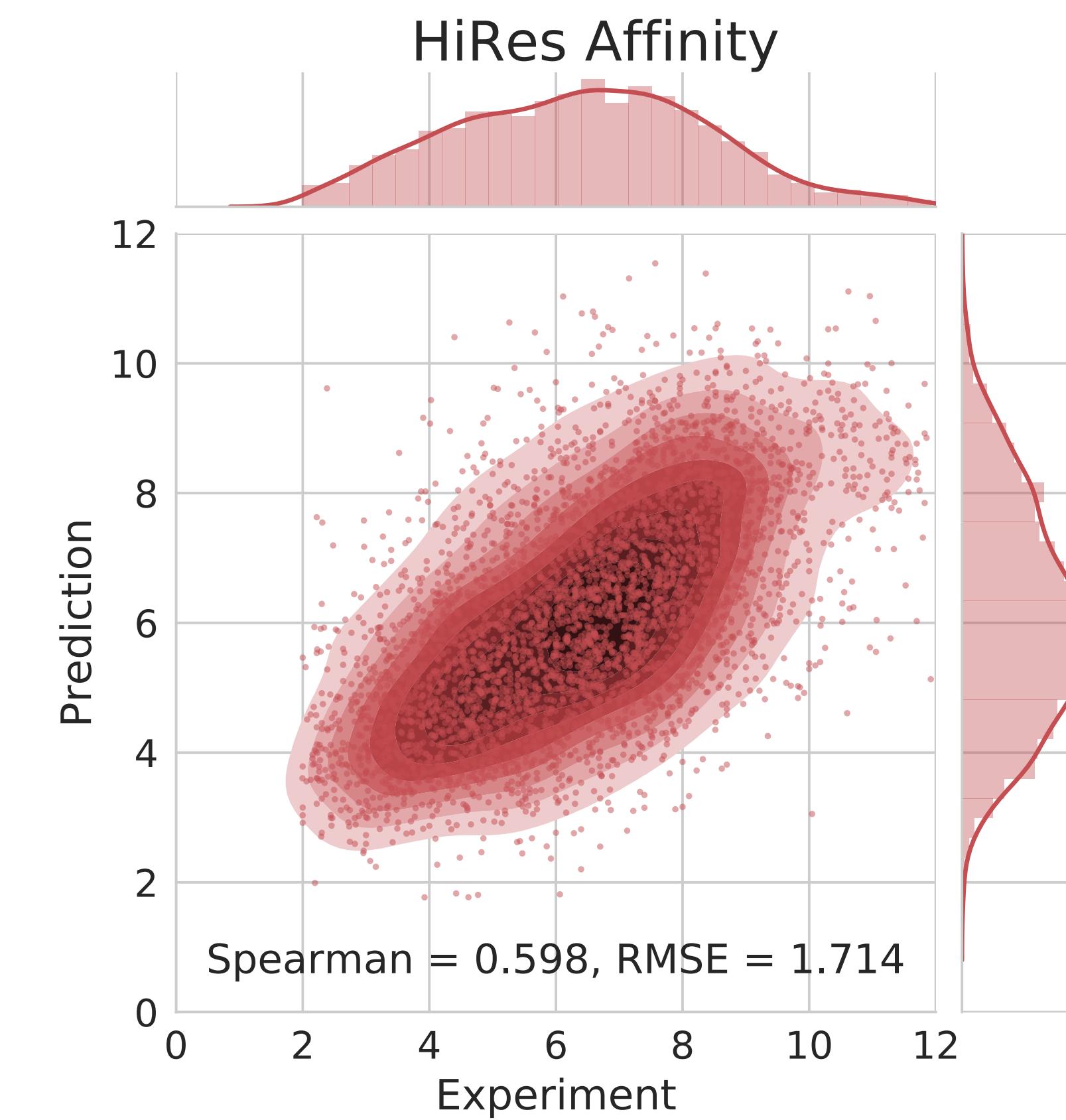
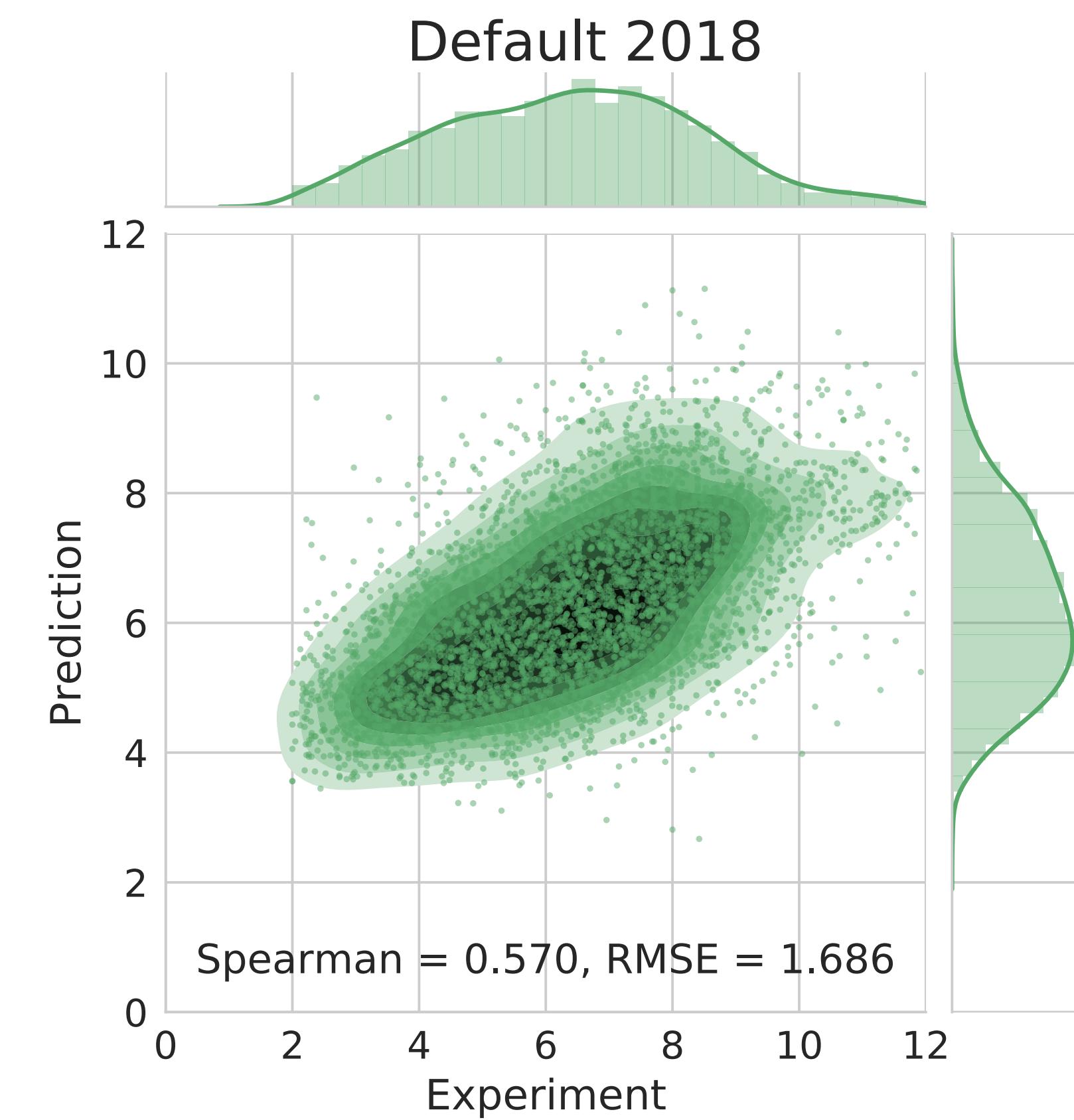
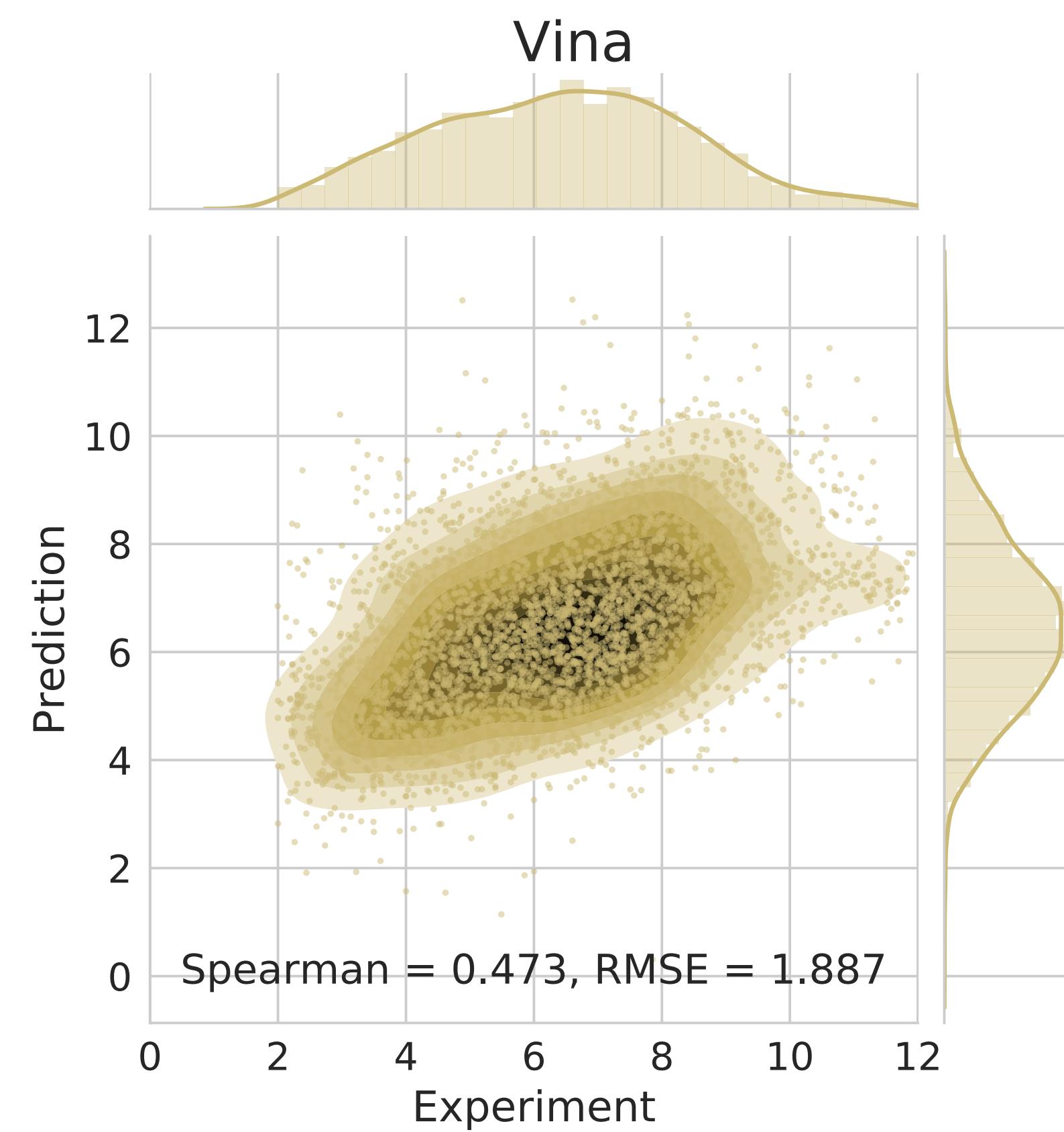
HiRes Affinity

Pose Results

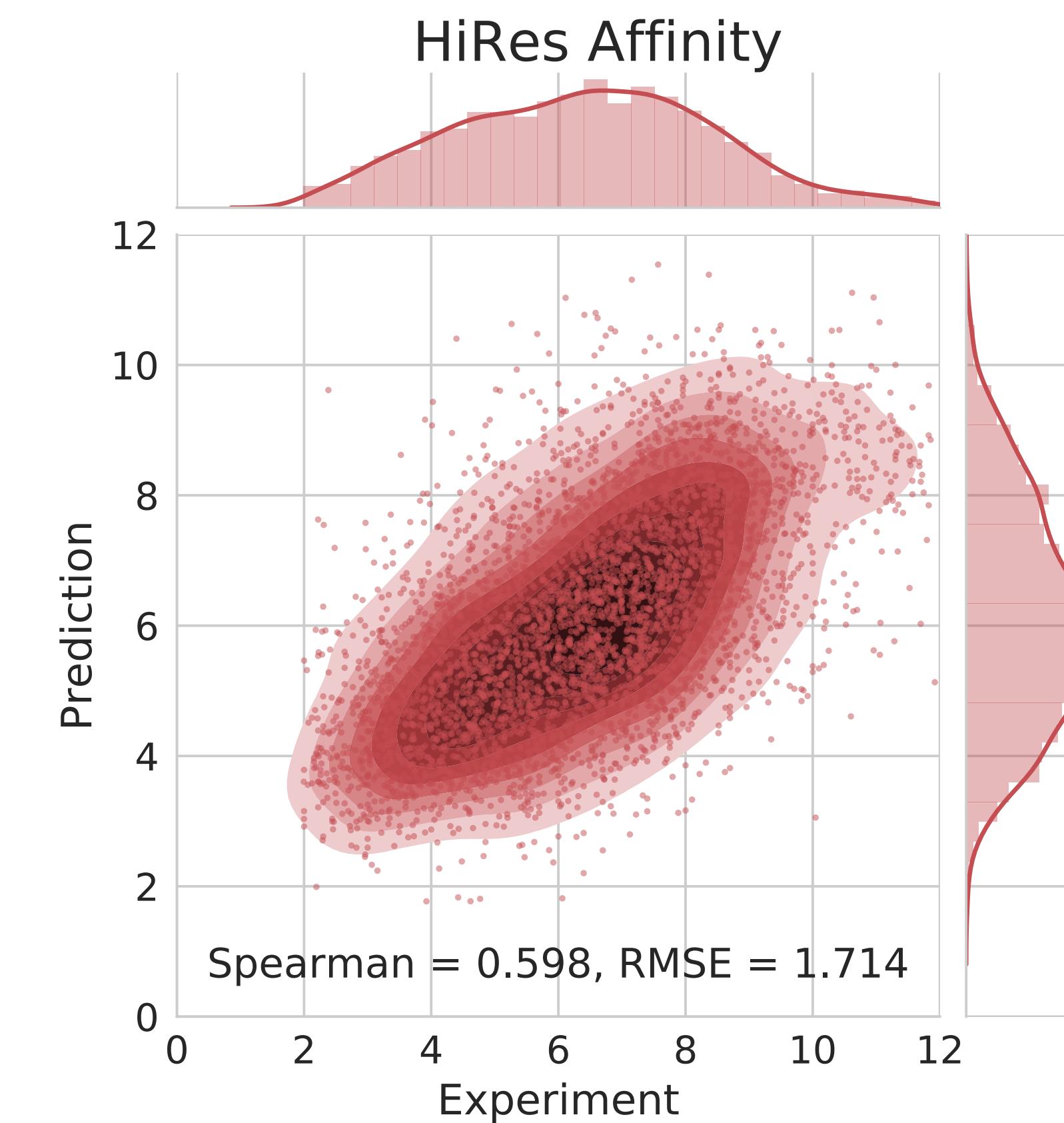
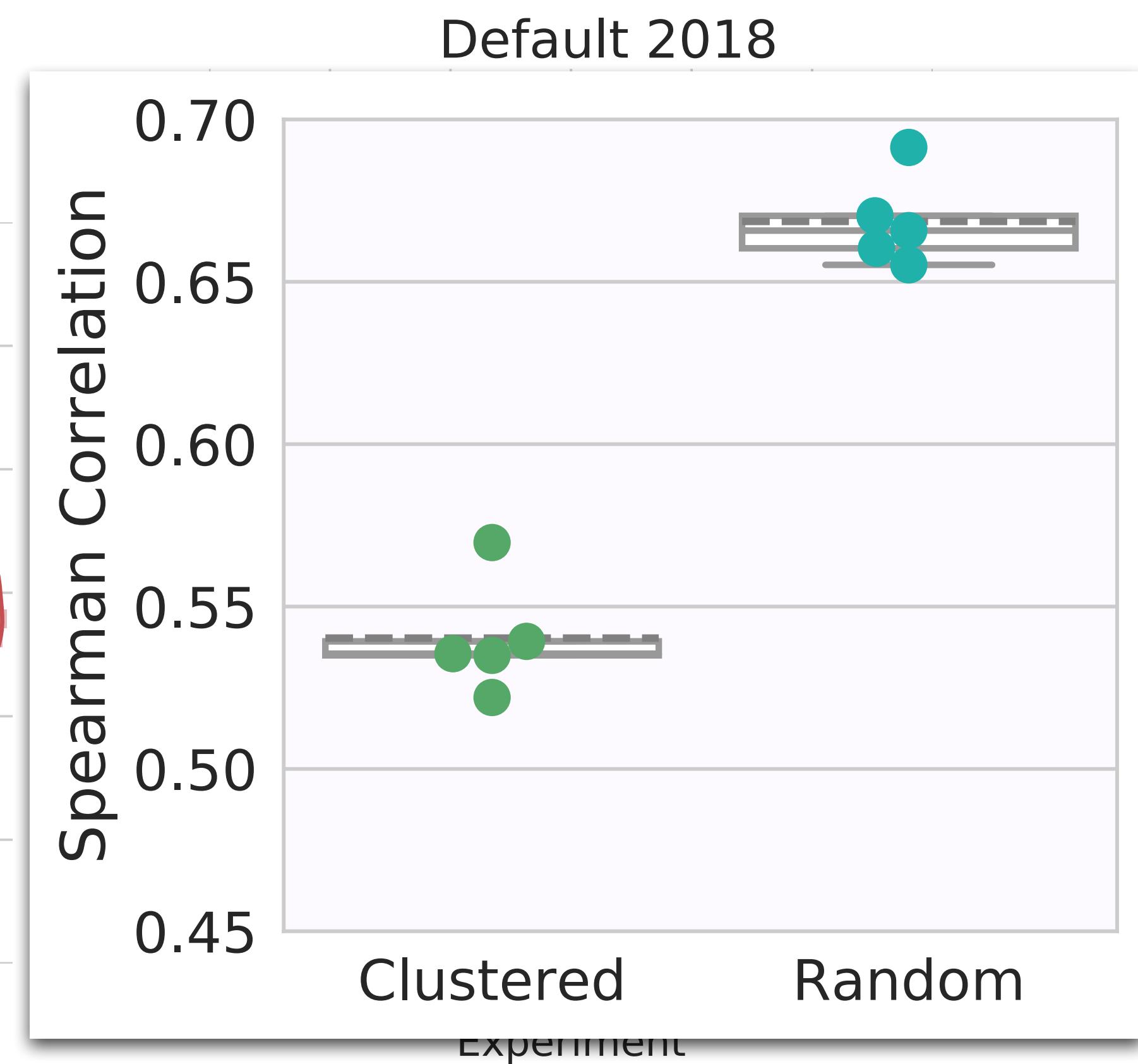
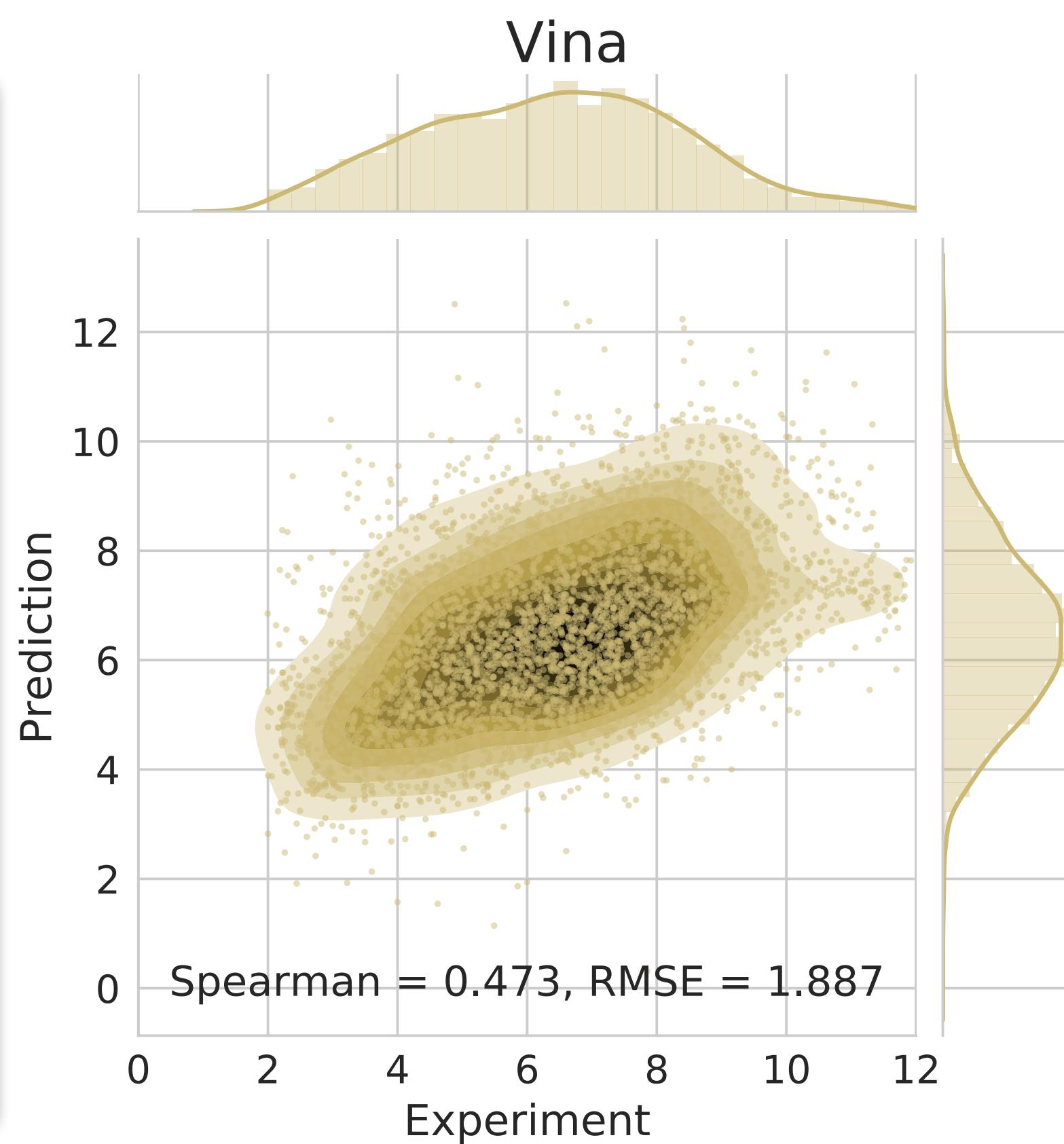
Crossdocked Pose



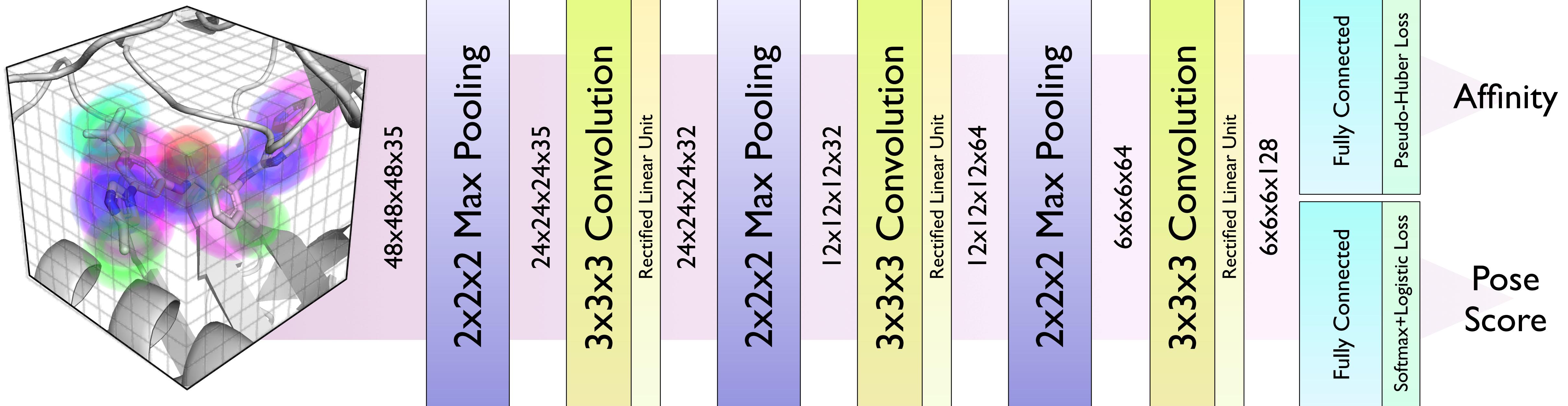
Affinity Results



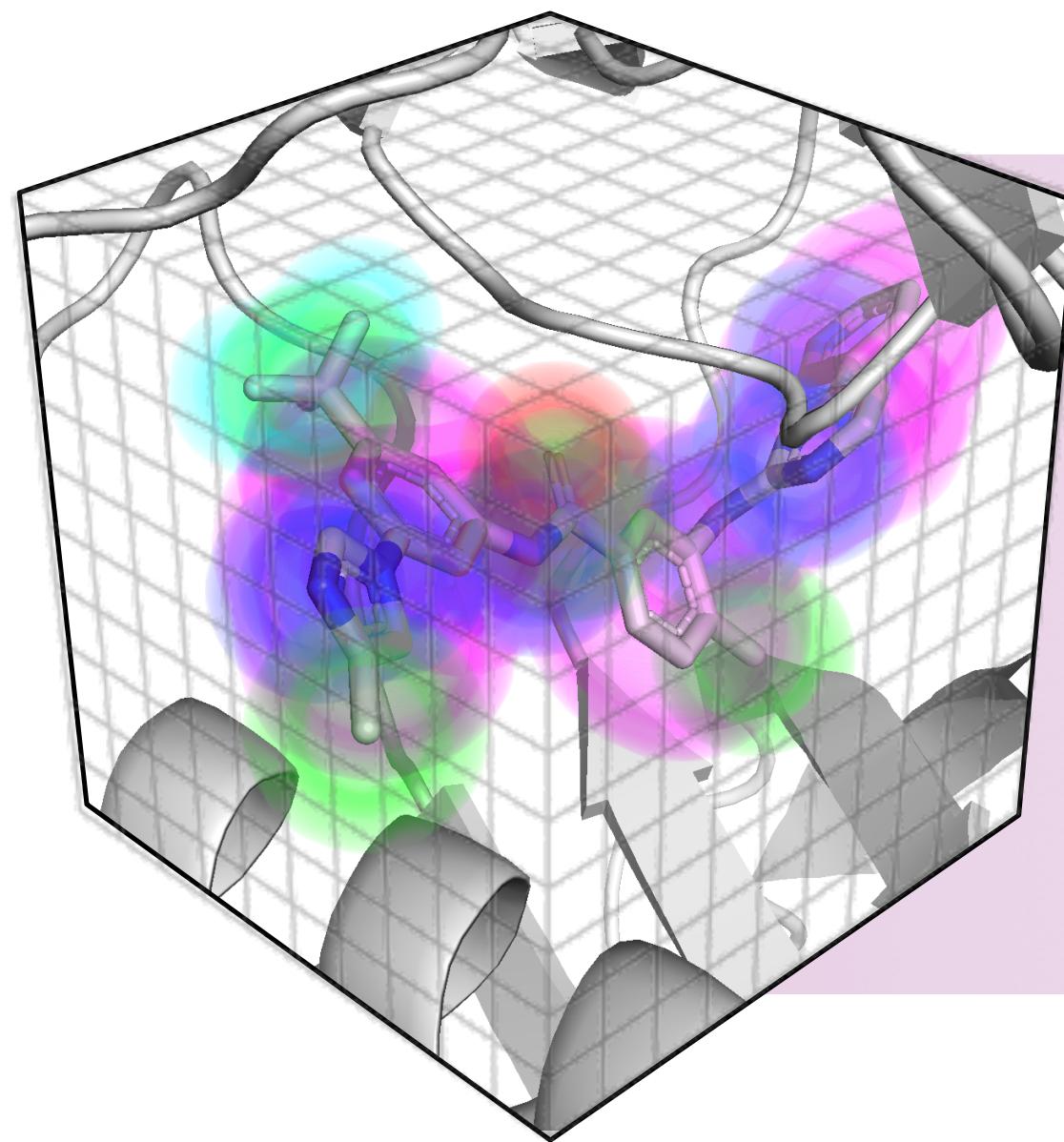
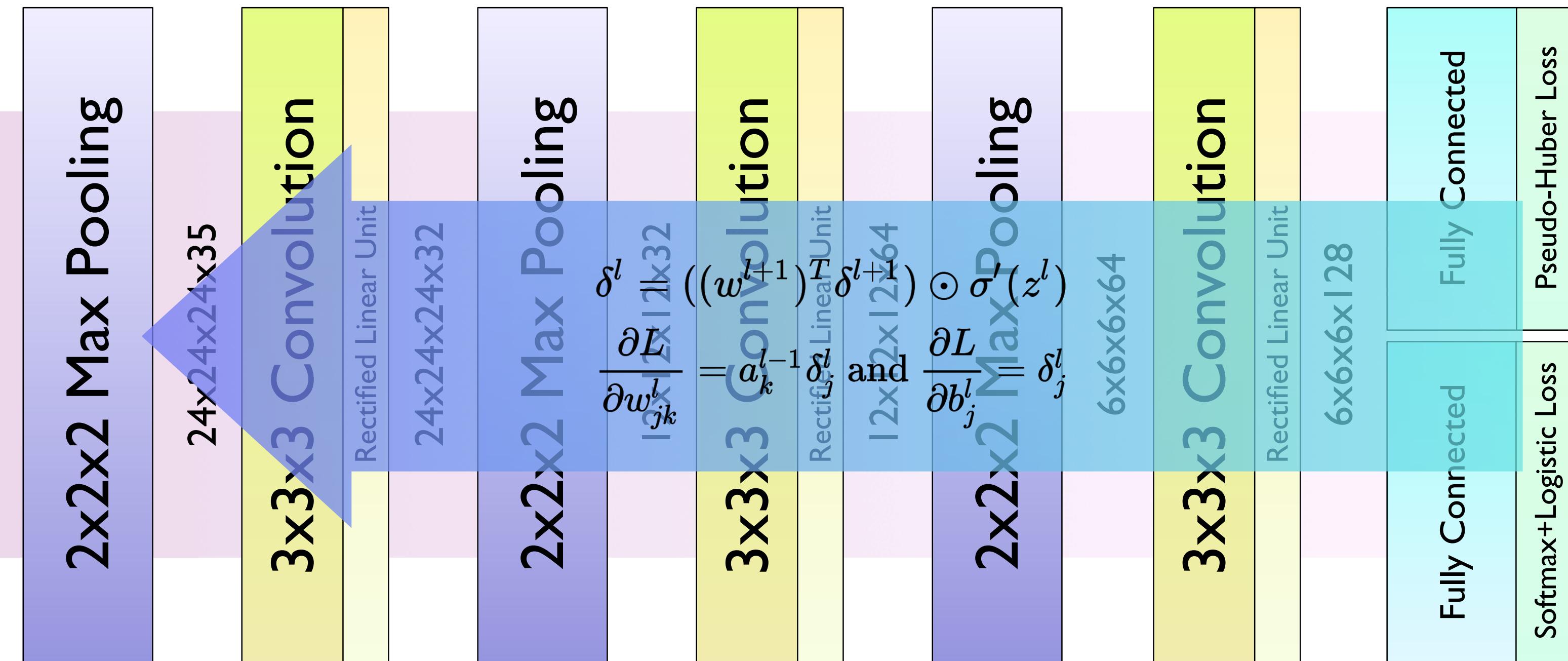
Affinity Results



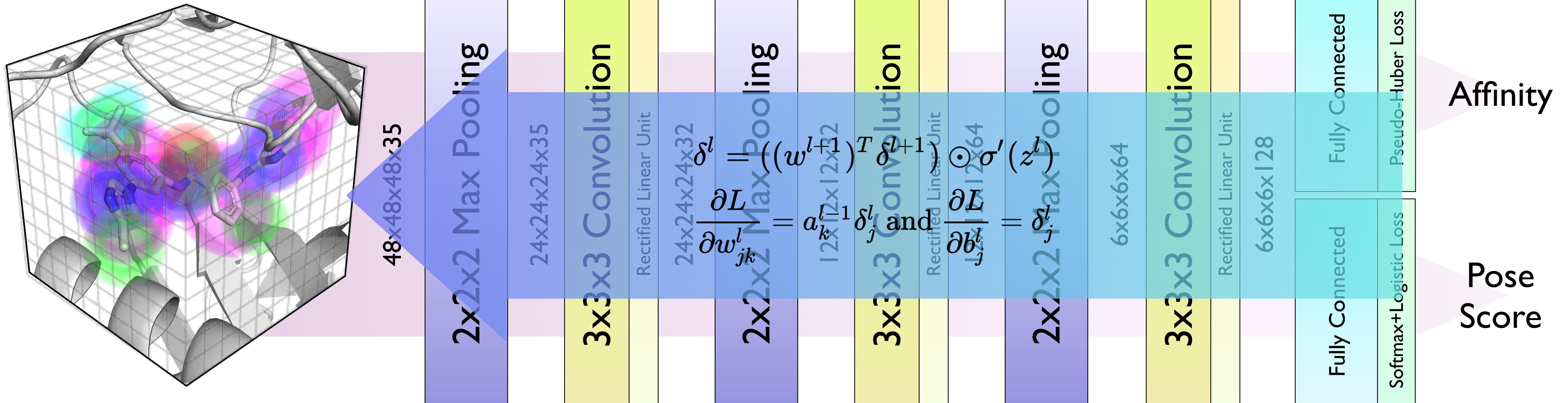
Beyond Scoring



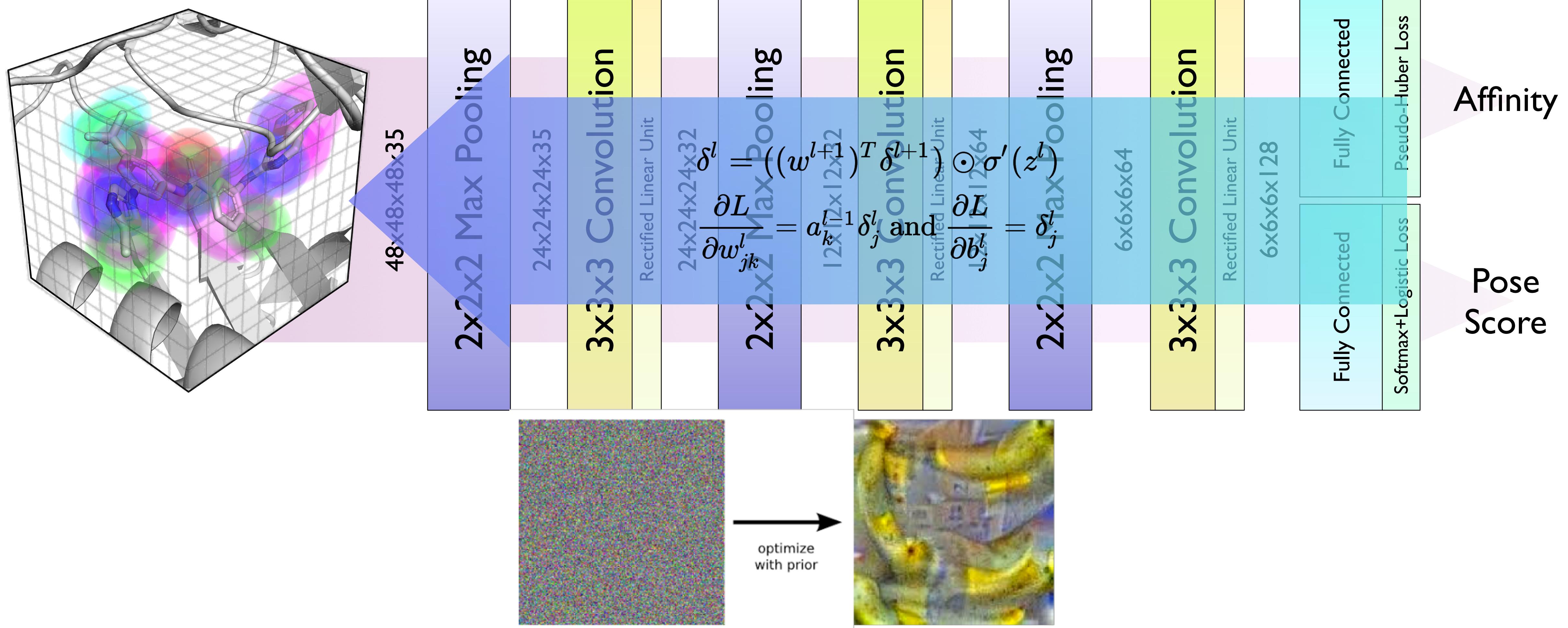
Beyond Scoring



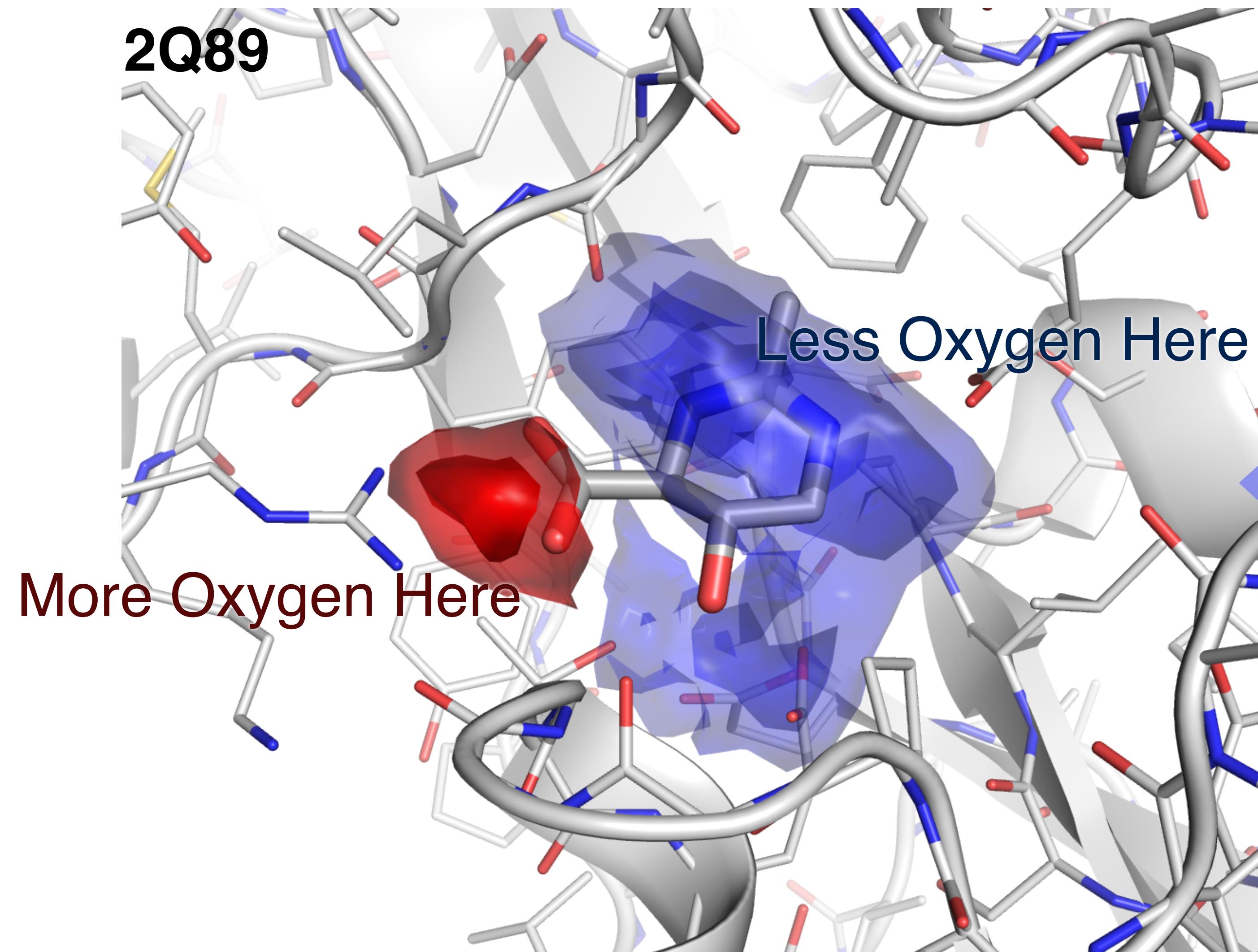
Beyond Scoring



Beyond Scoring

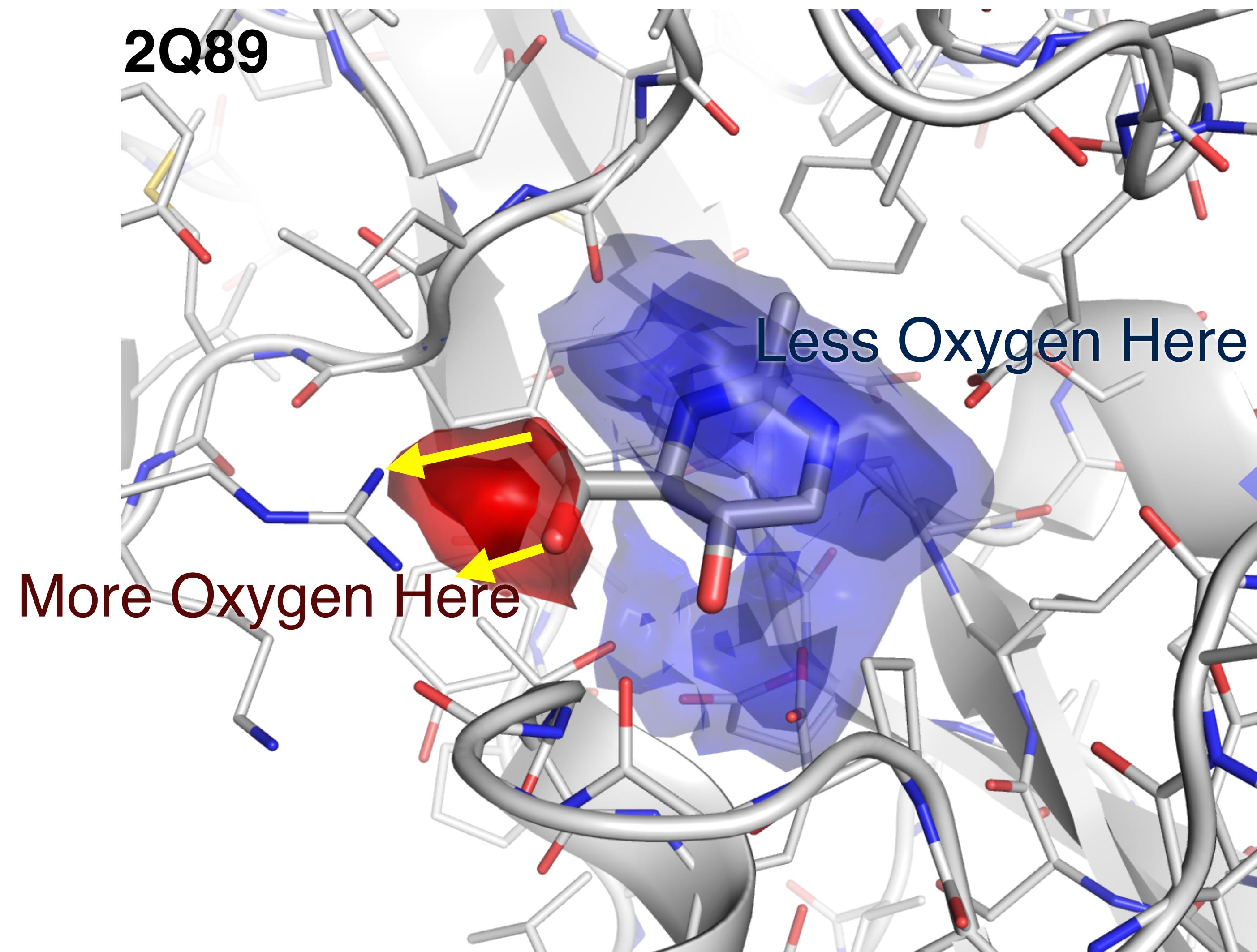


Beyond Scoring

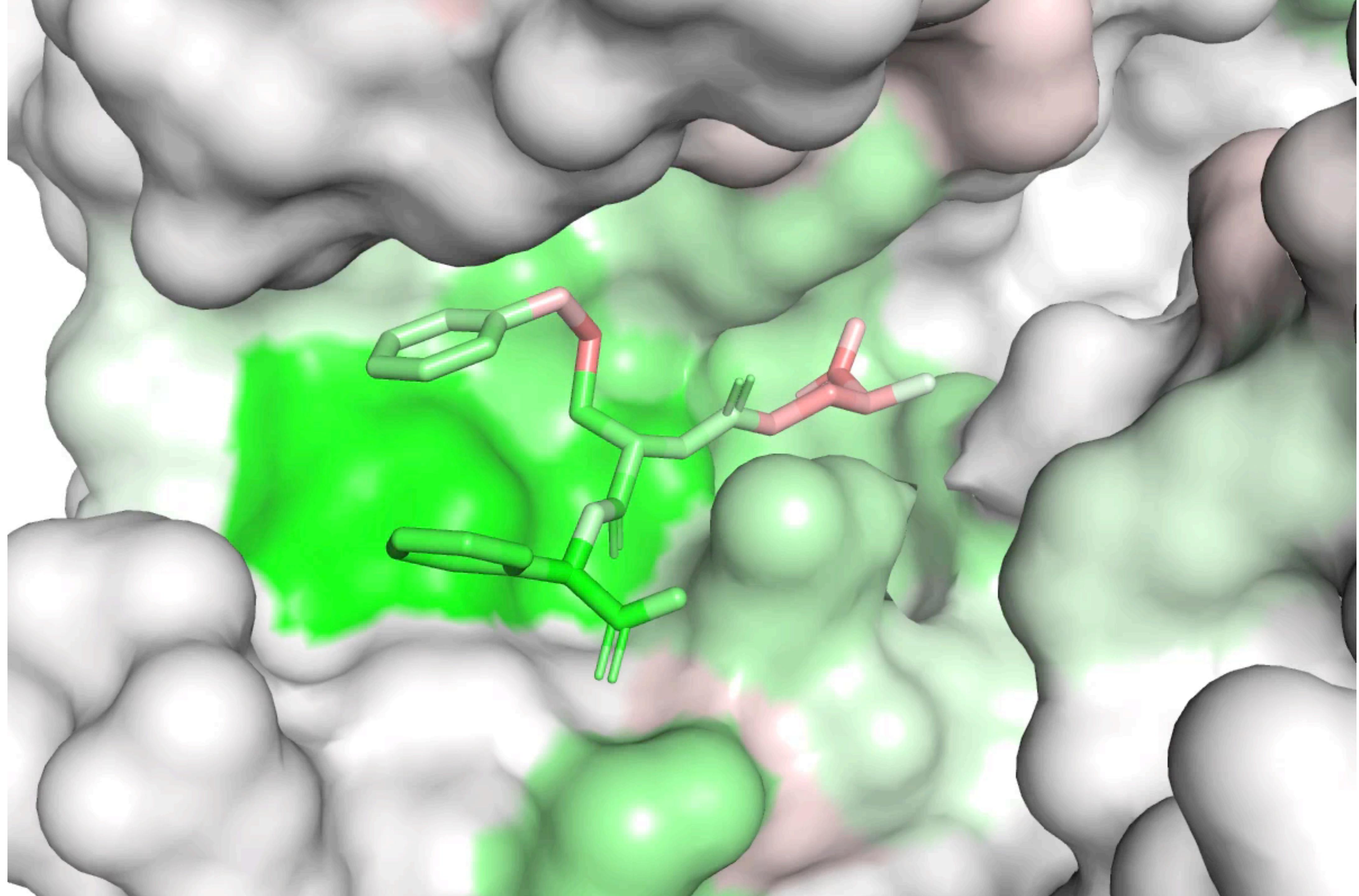


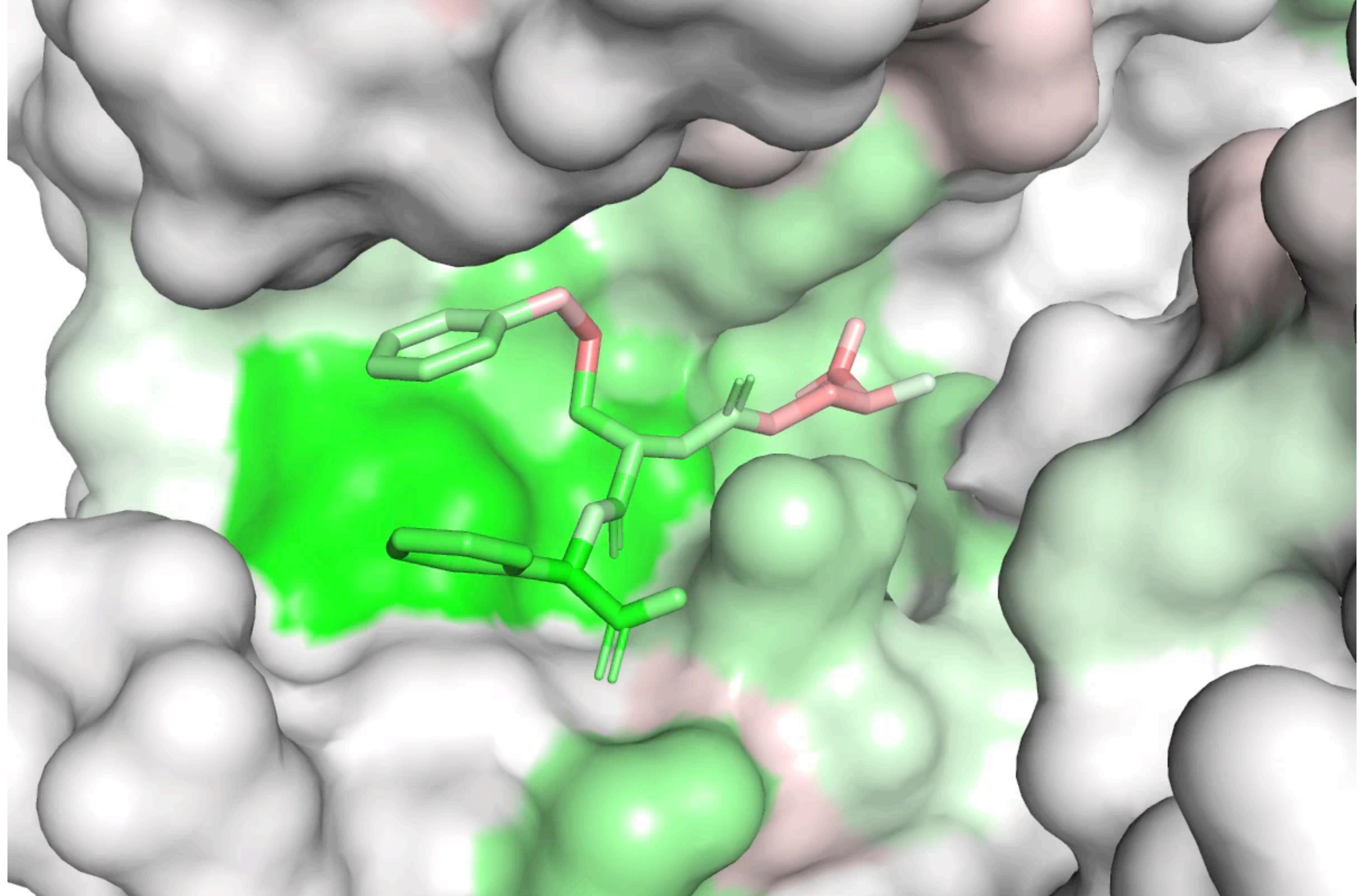
$$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$$

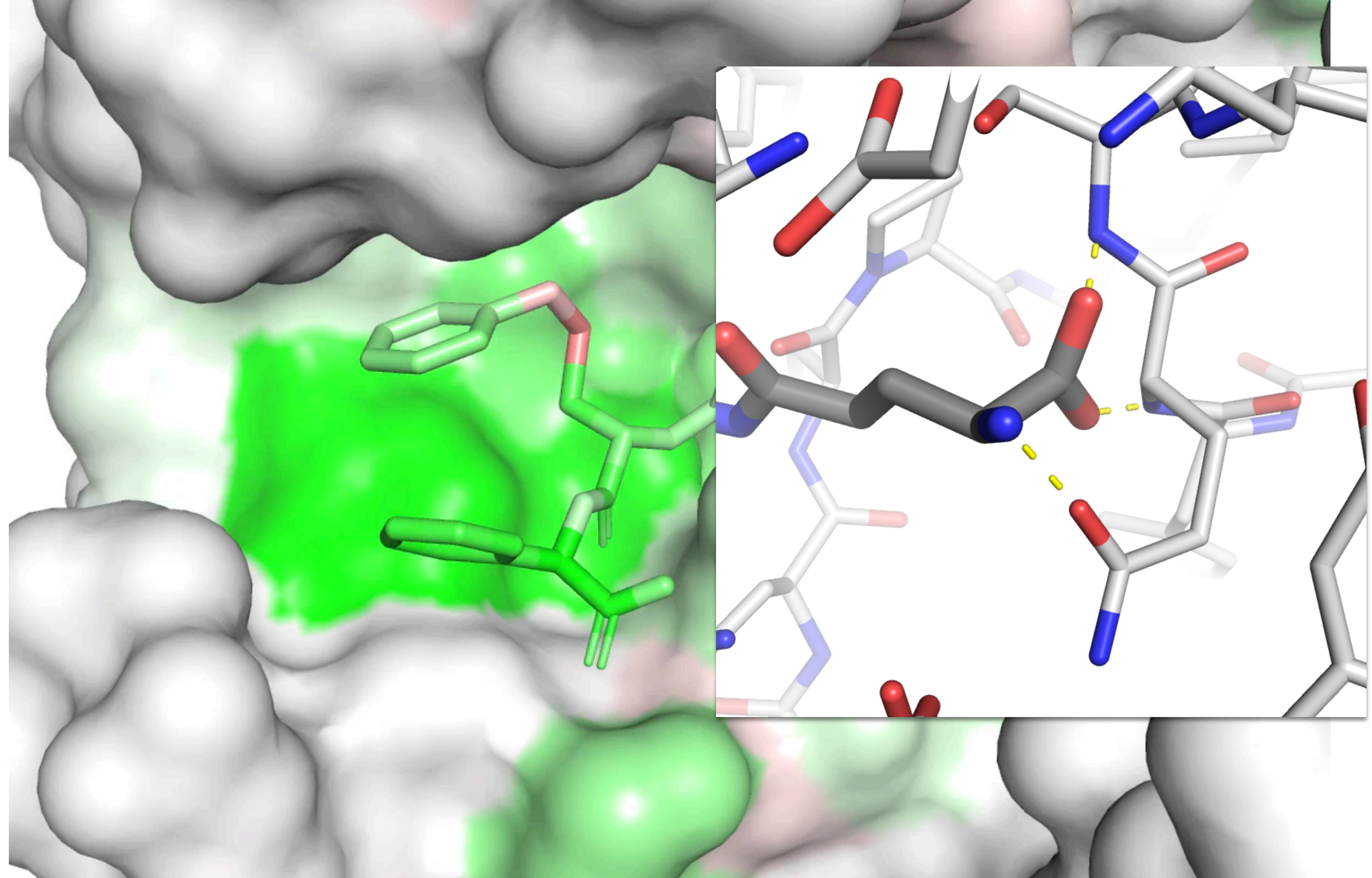
Beyond Scoring

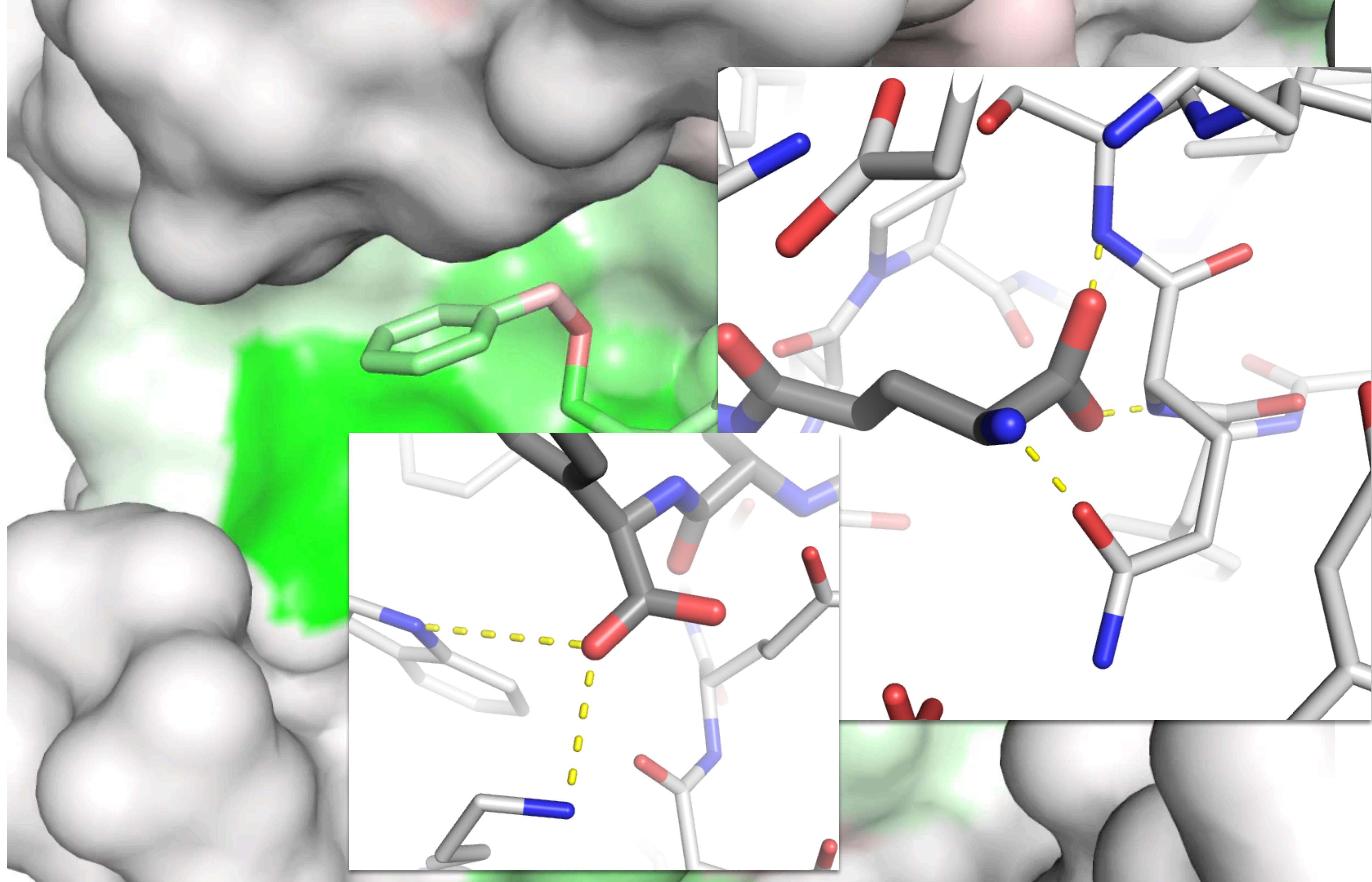


$$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$$

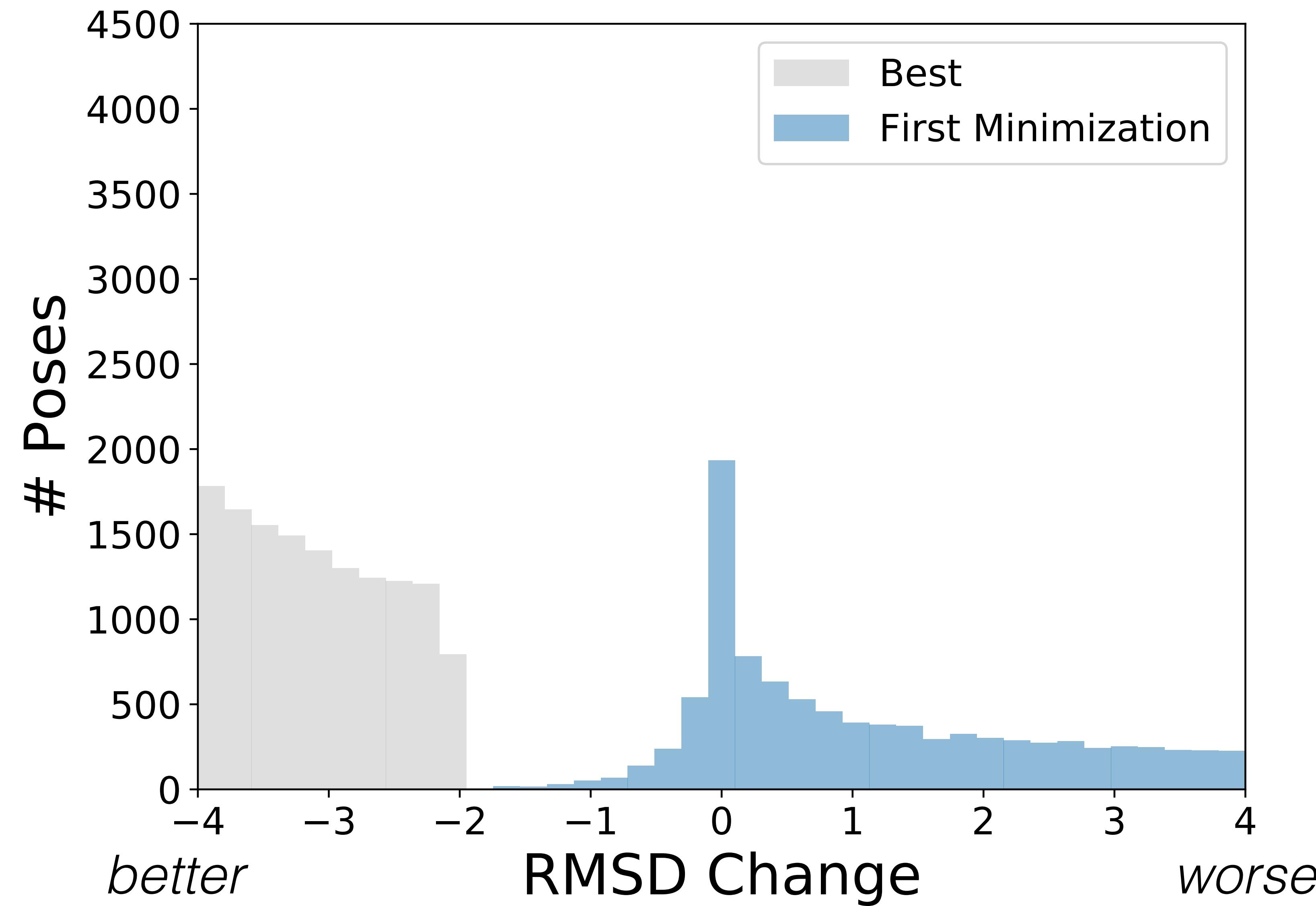




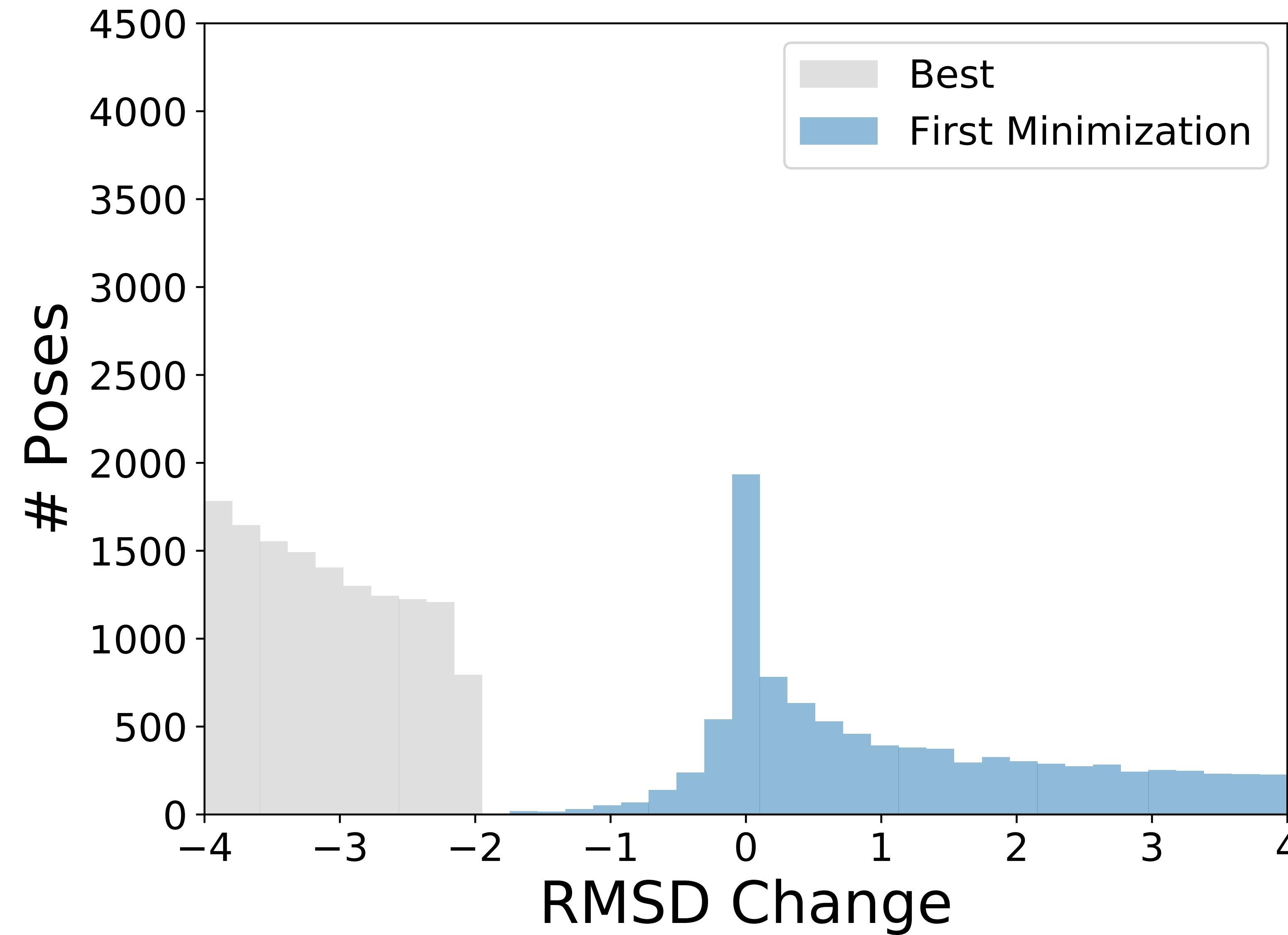




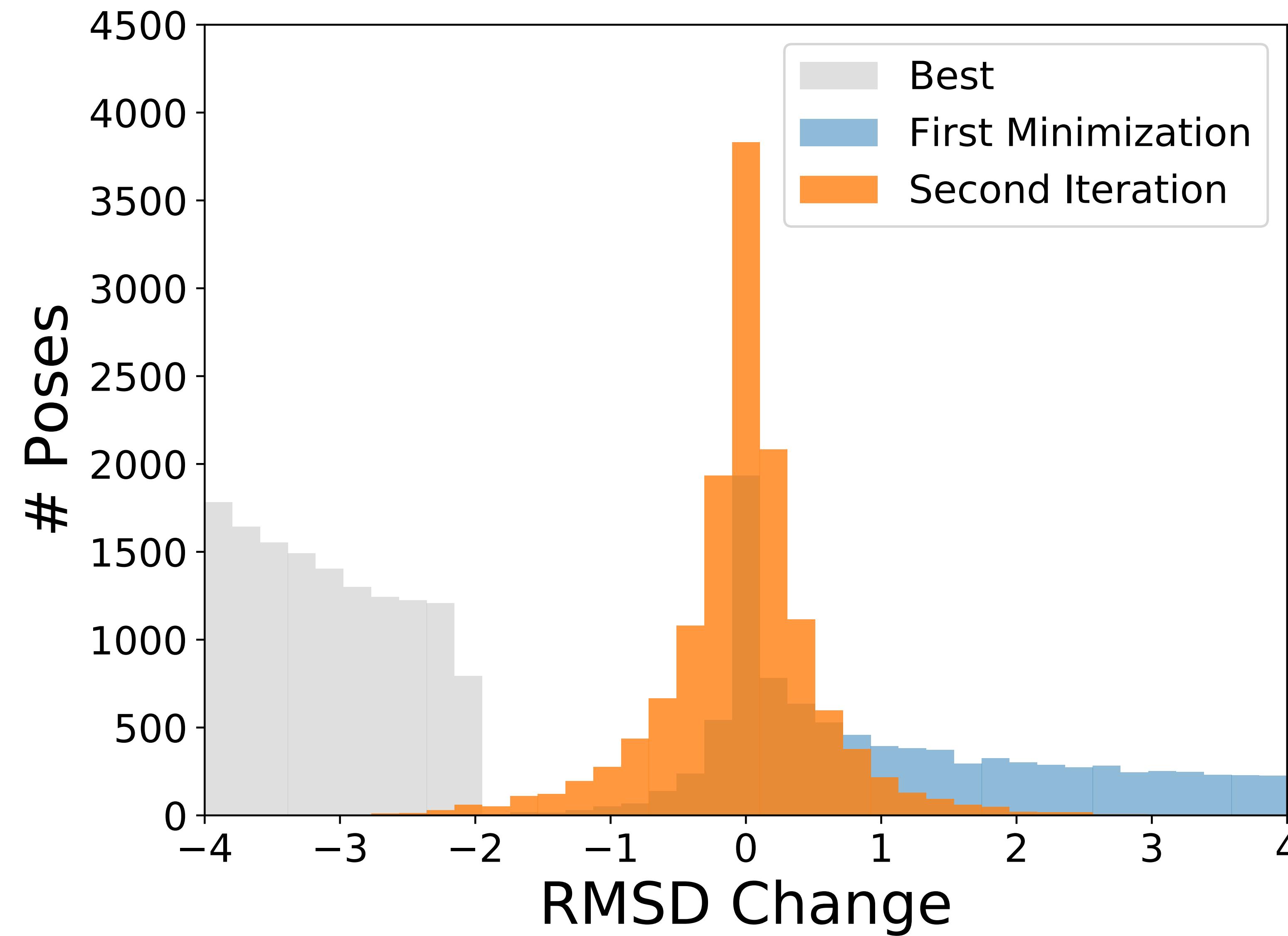
Minimizing Low RMSD Poses



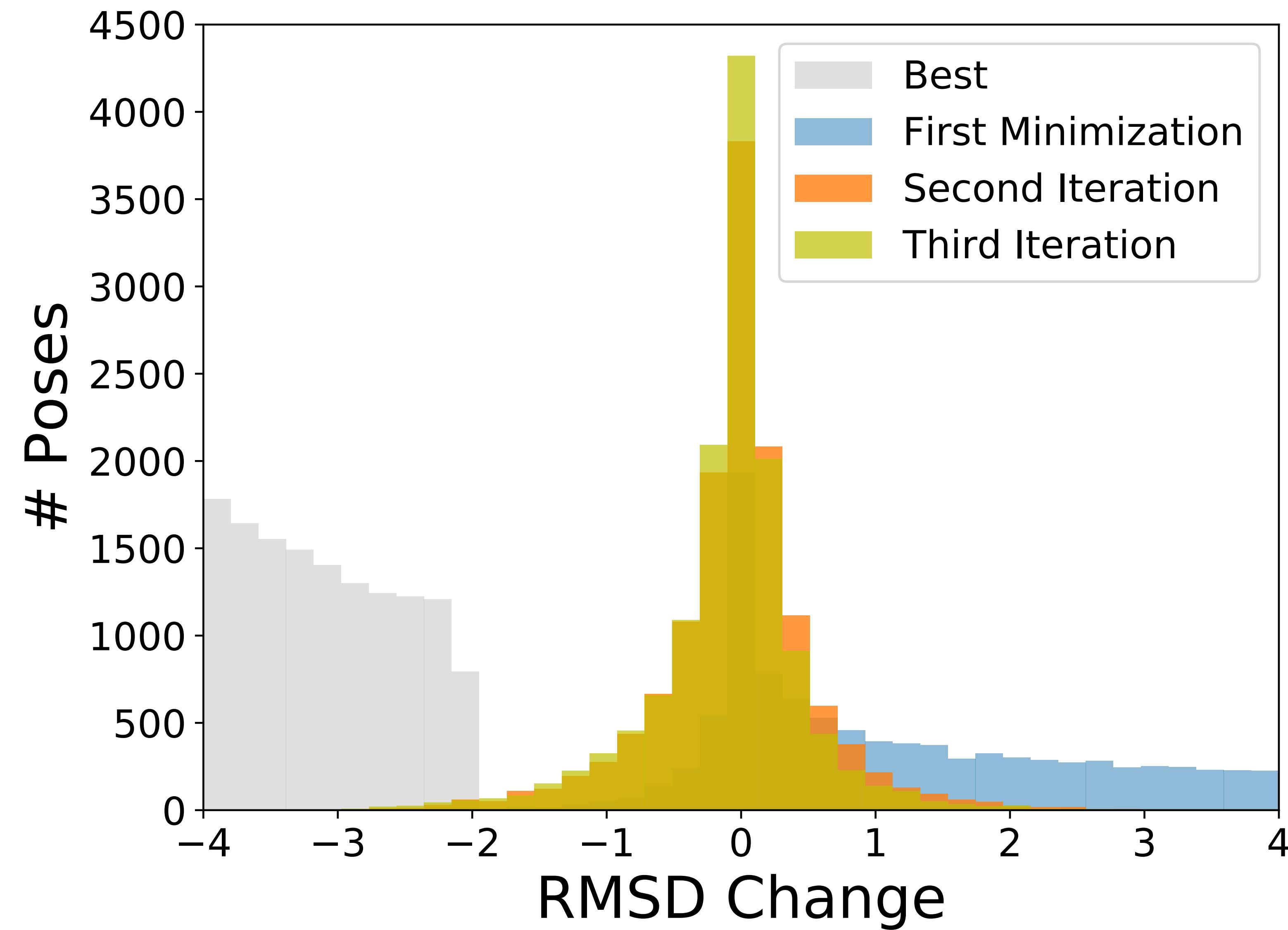
Iterative Refinement

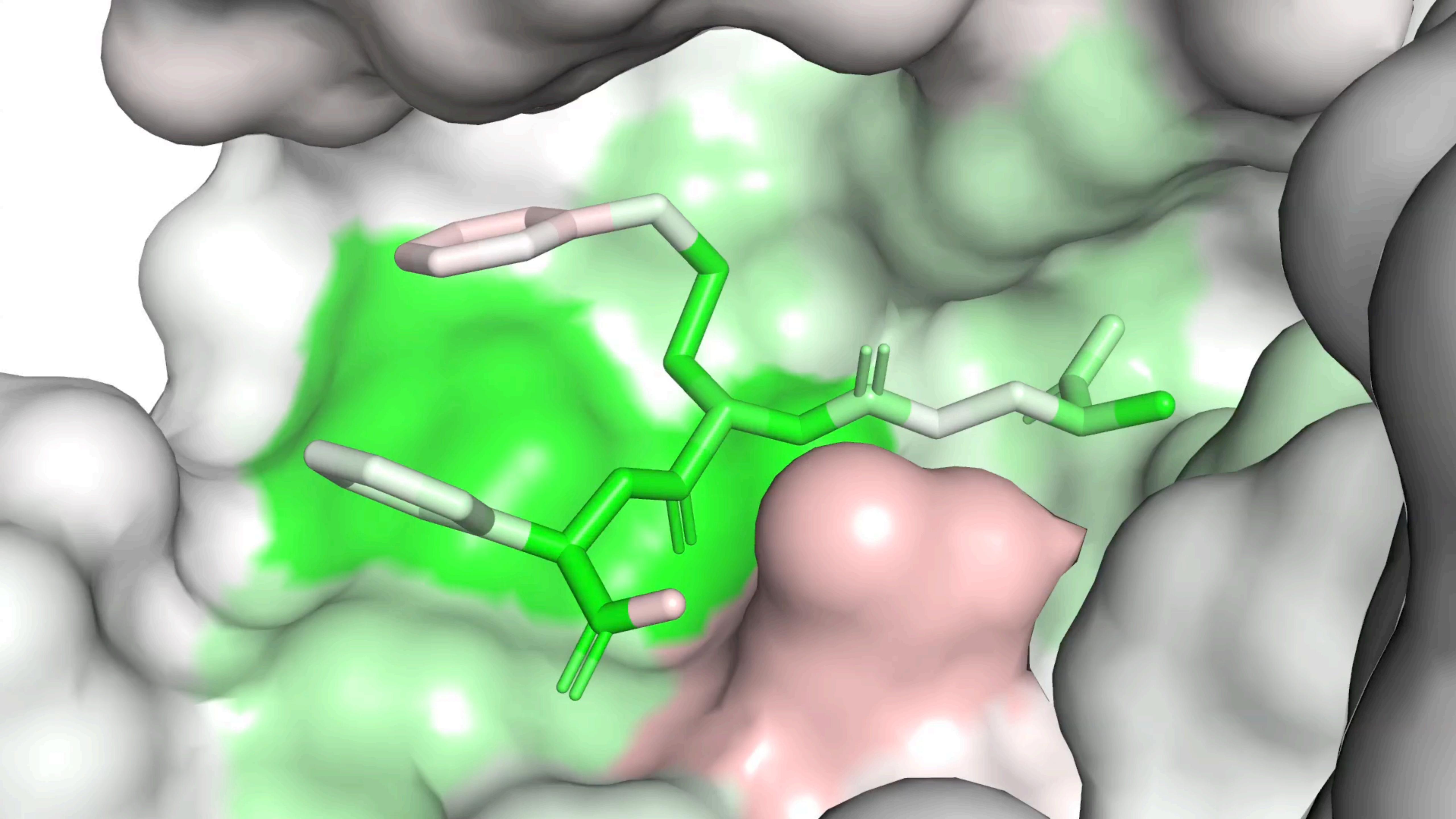


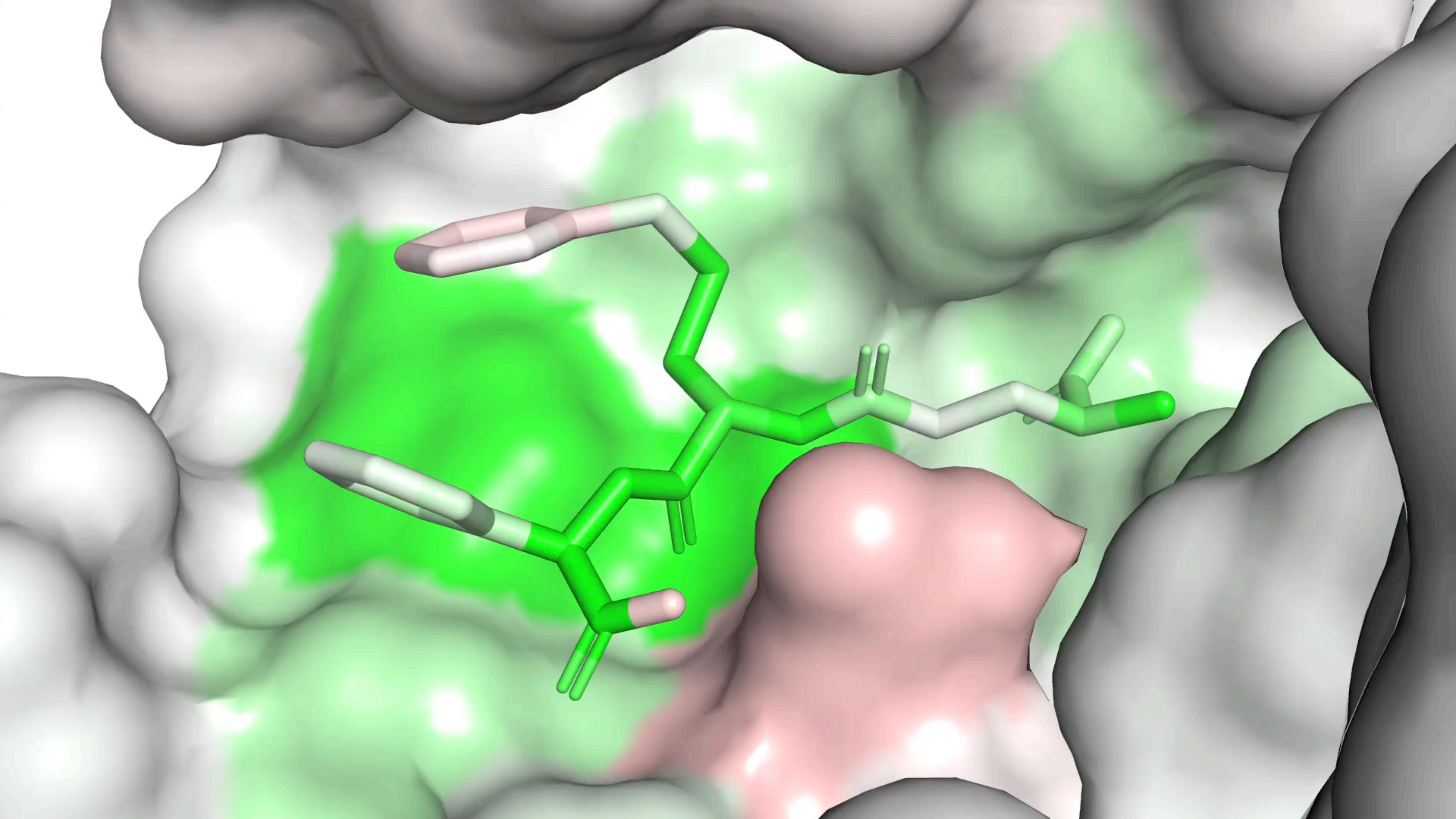
Iterative Refinement



Iterative Refinement



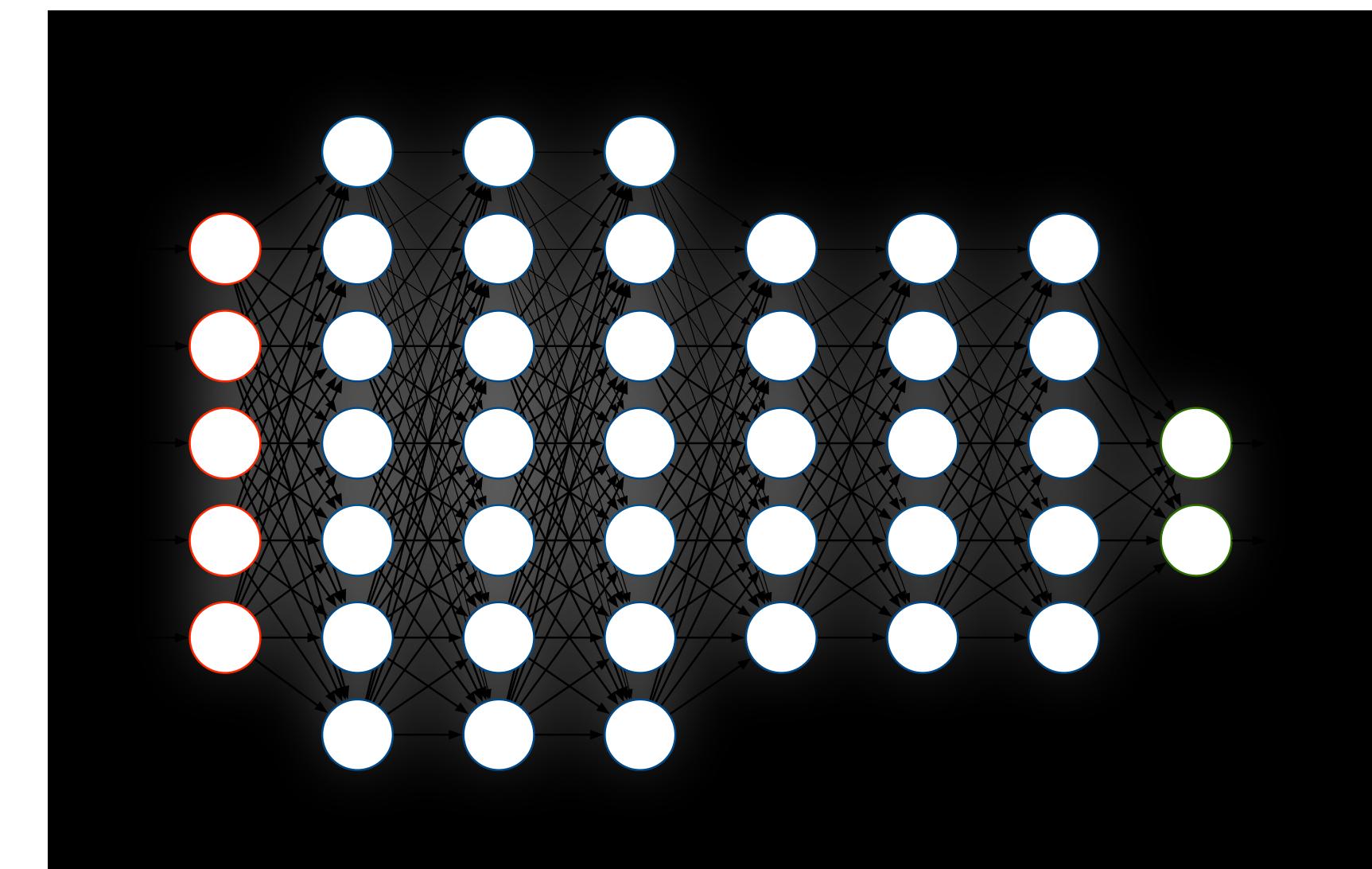




Generative Modeling

Discriminative Model

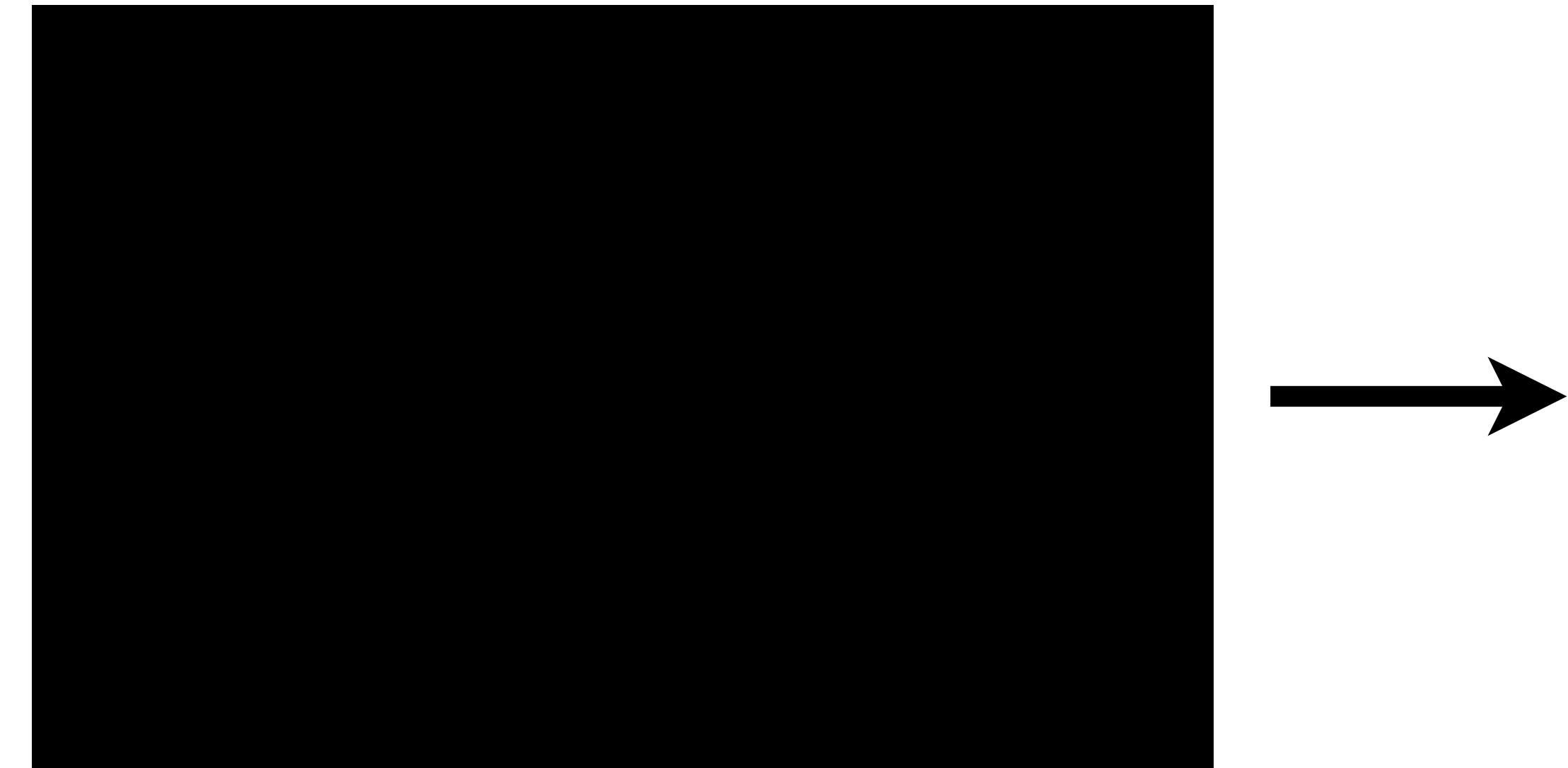
Features \mathbf{X}



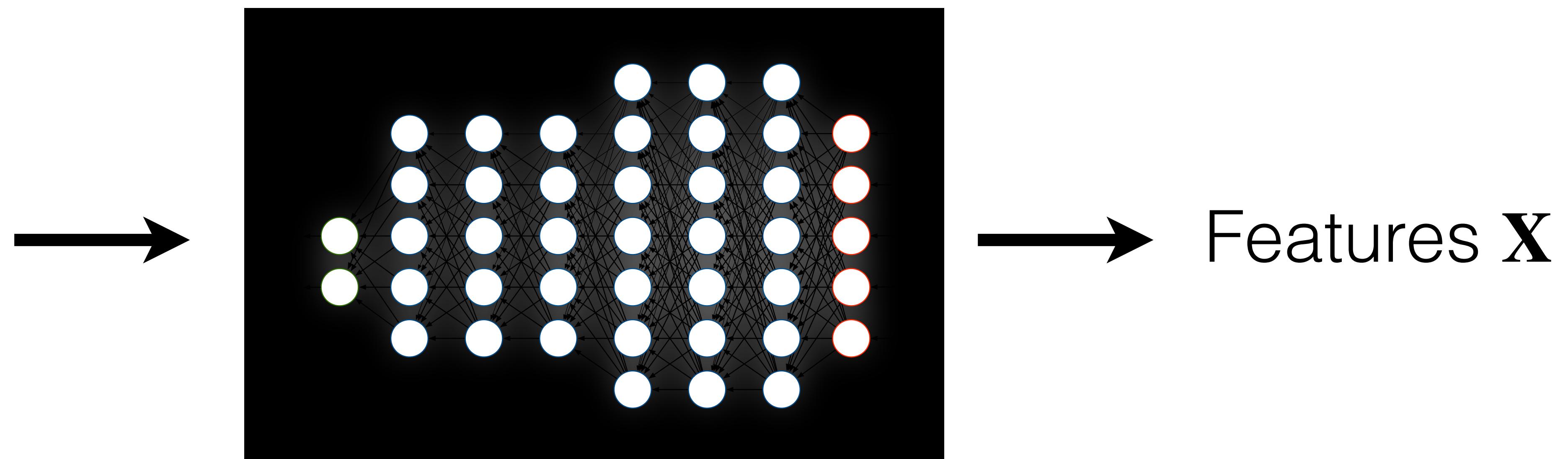
 Prediction \mathbf{y}

Generative Model

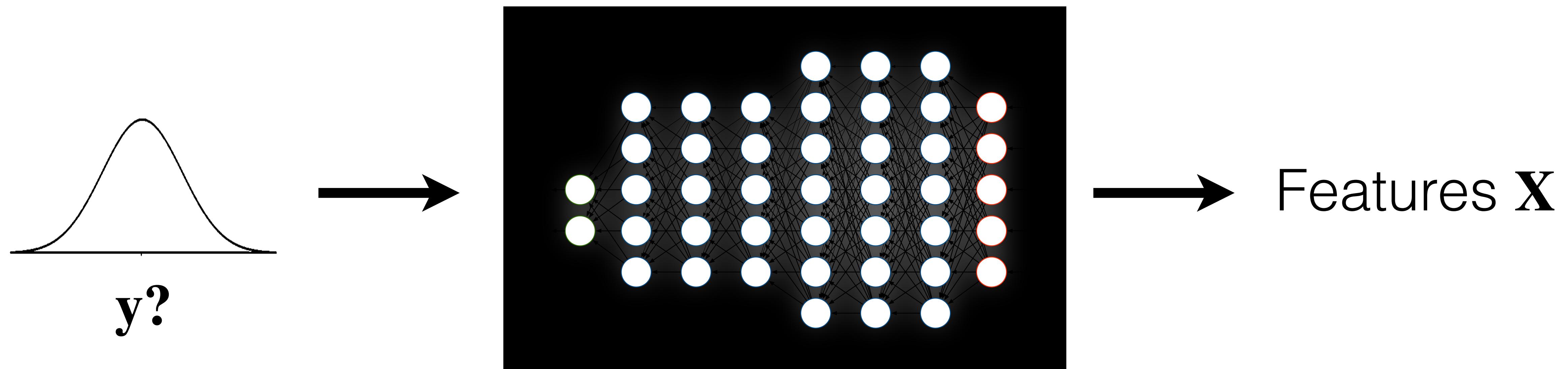
Features \mathbf{X}



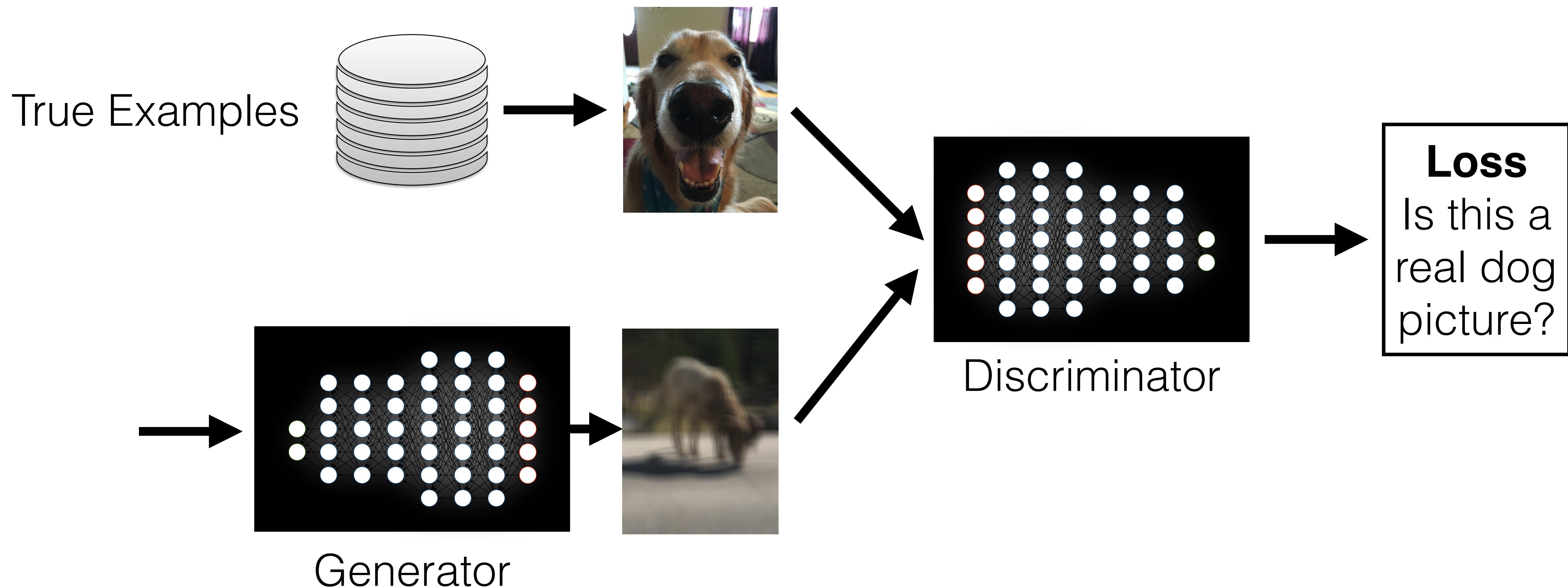
Generative Model



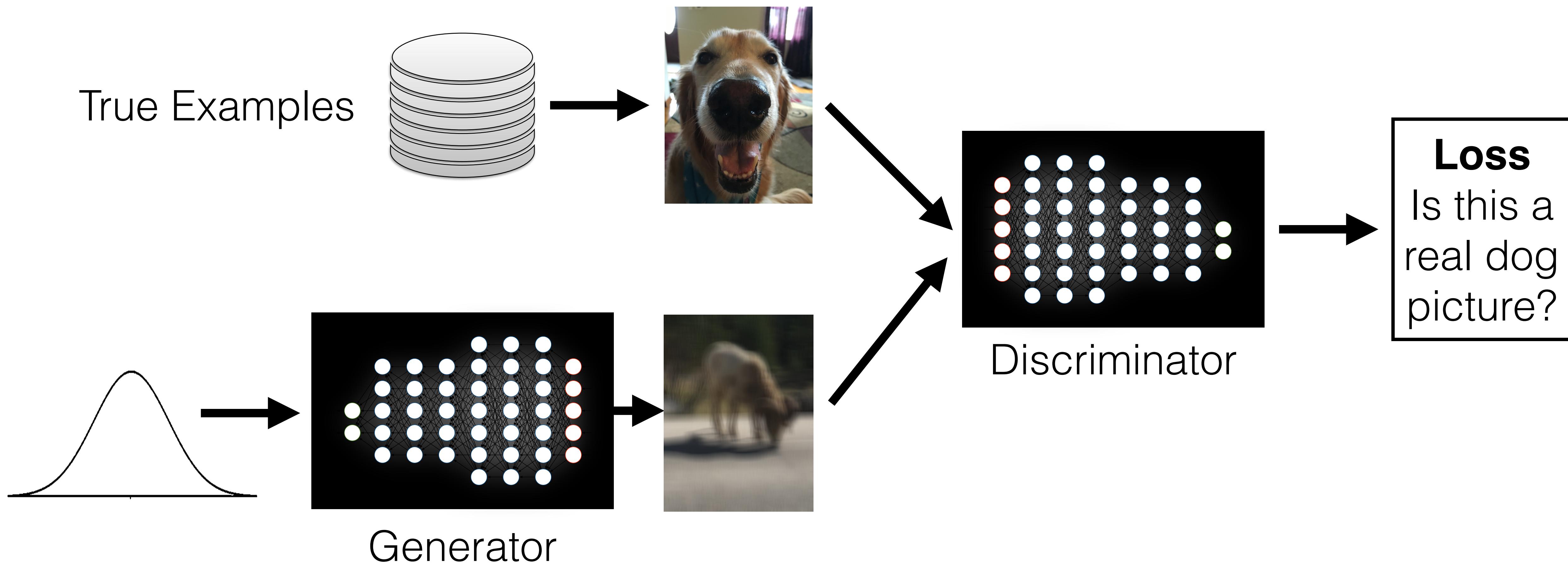
Generative Model



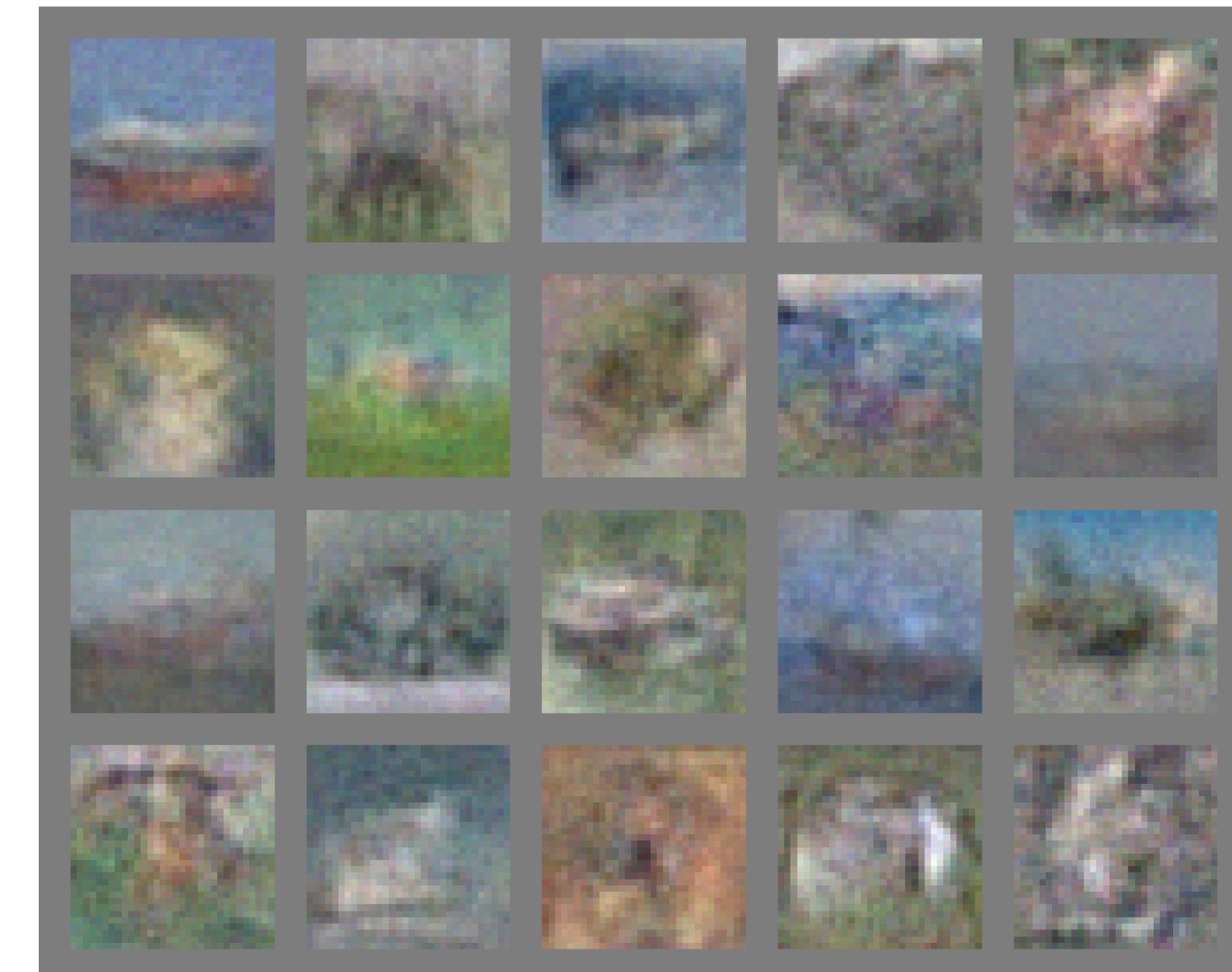
Generative Adversarial Networks



Generative Adversarial Networks



Generative Adversarial Networks



Generative Adversarial Networks

<https://arxiv.org> › stat ▾

by IJ Goodfellow - 2014 - Cited by 4339 - Related articles

Jun 10, 2014 - Submission history. From: Ian Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17
GMT (1257kb,D). Which authors of this paper are ...

Generative Adversarial Networks

Generative Adversarial Networks

<https://arxiv.org> › stat ▾

by IJ Goodfellow - 2014 - Cited by 4339 - Related articles

Jun 10, 2014 - Submission history. From: Ian Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17
GMT (1257kb,D). Which authors of this paper are ...

<http://torch.ch/blog/2015/11/13/gan.html>

PROGRESSIVE GROWING OF GANs FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras
NVIDIA

Timo Aila
NVIDIA

Samuli Laine
NVIDIA

Jaakko Lehtinen
NVIDIA
Aalto University

PROGRESSIVE GROWING OF GANs FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras
NVIDIA

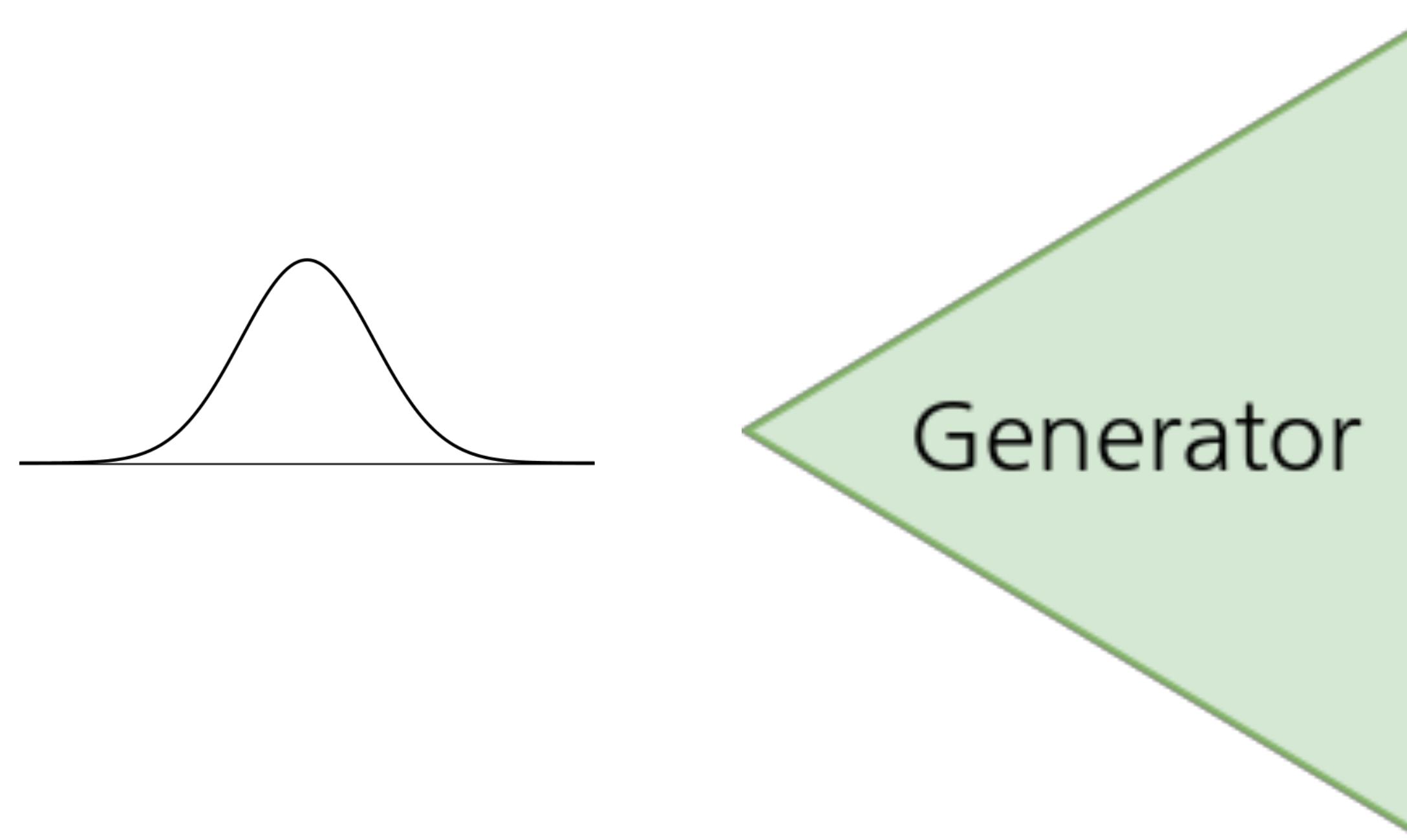
Timo Aila
NVIDIA

Samuli Laine
NVIDIA

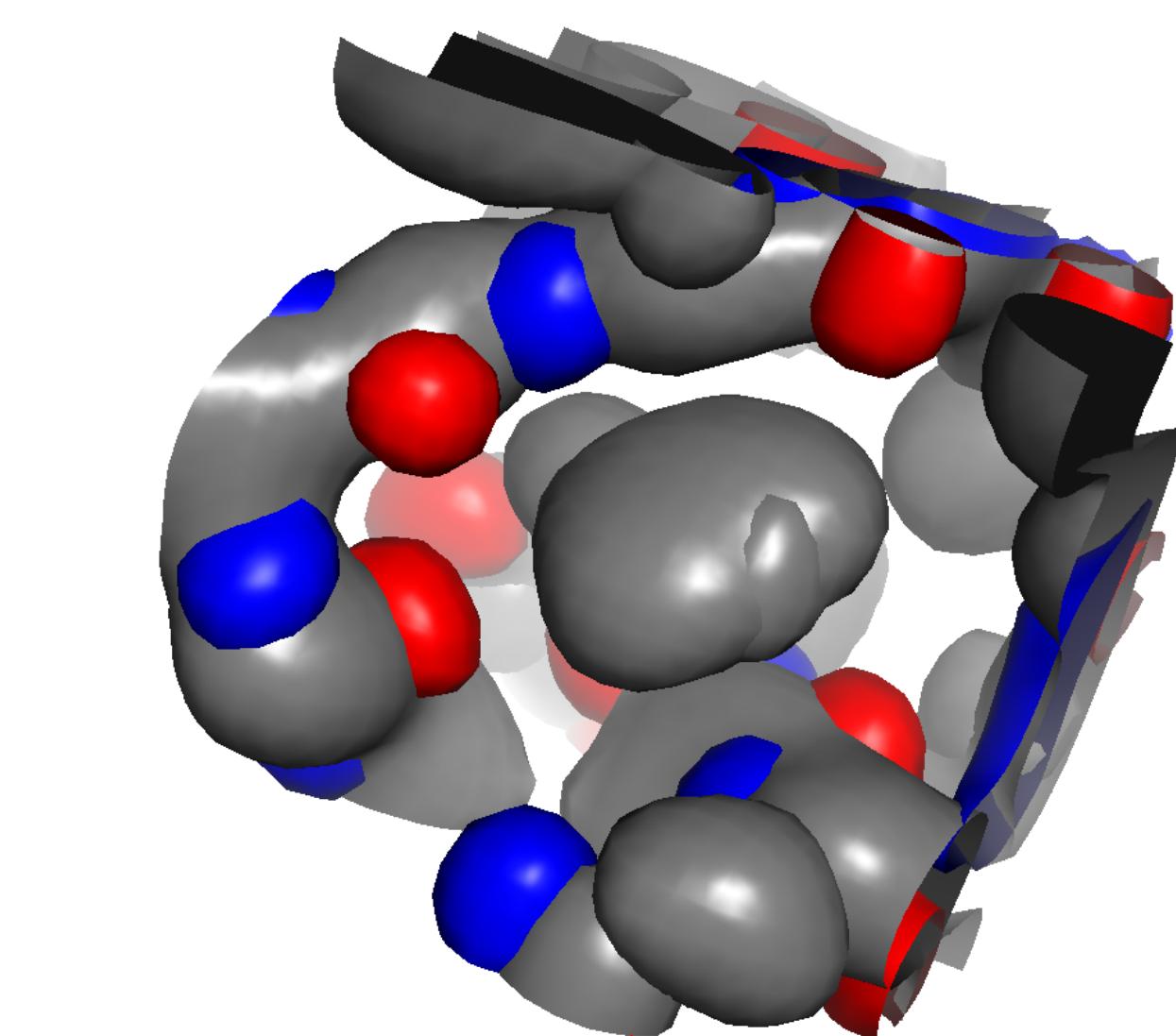
Jaakko Lehtinen
NVIDIA
Aalto University

Generative Models

Generative models approximate a data distribution directly. They can map samples from one distribution (noise or input data) to realistic samples from an output distribution of interest.

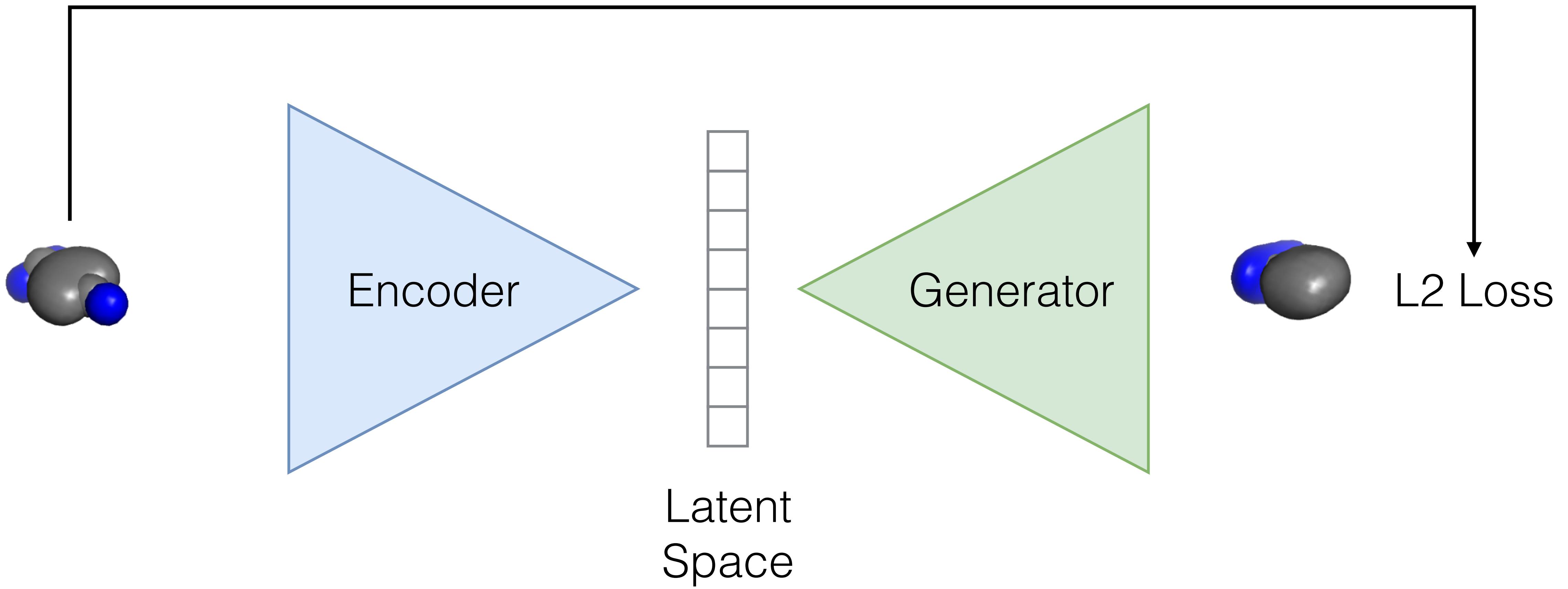


noise sample



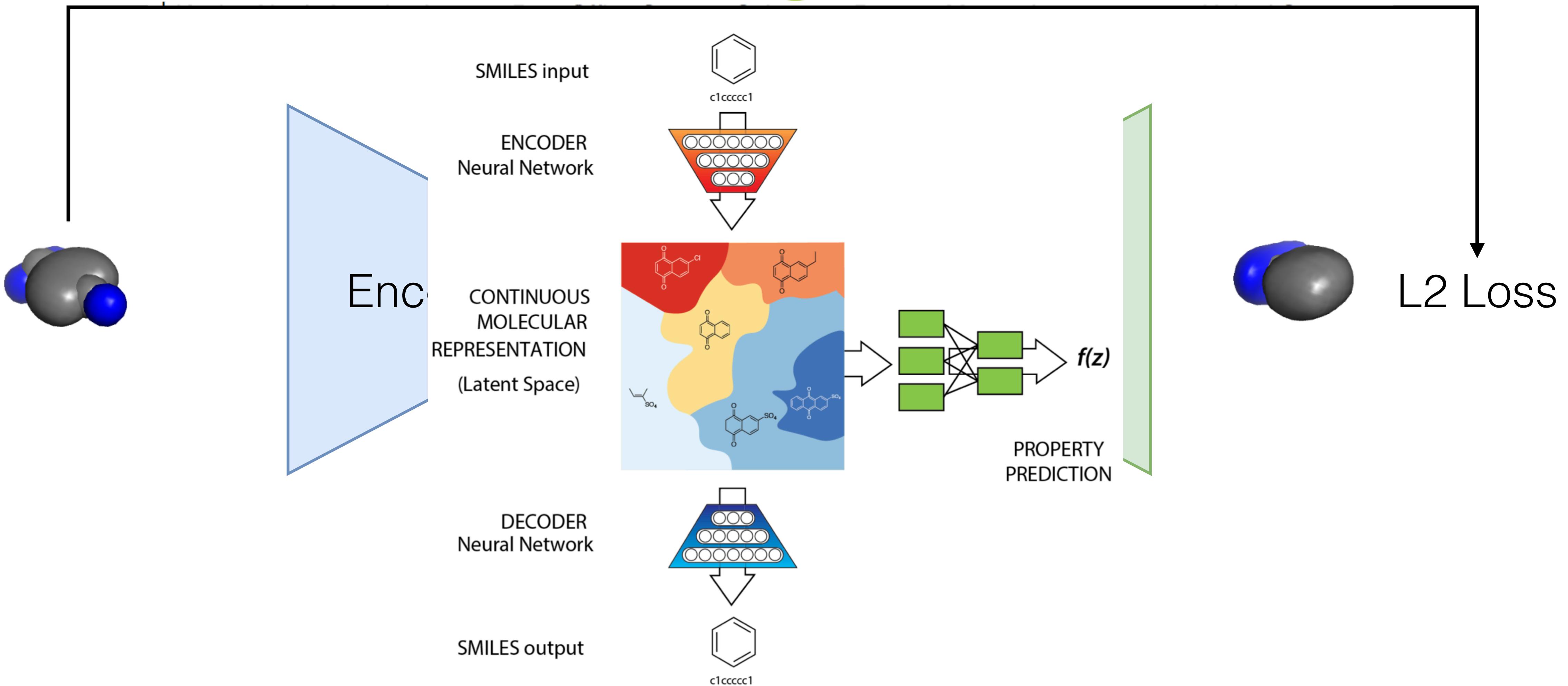
generated receptor & ligand grid

Autoencoding

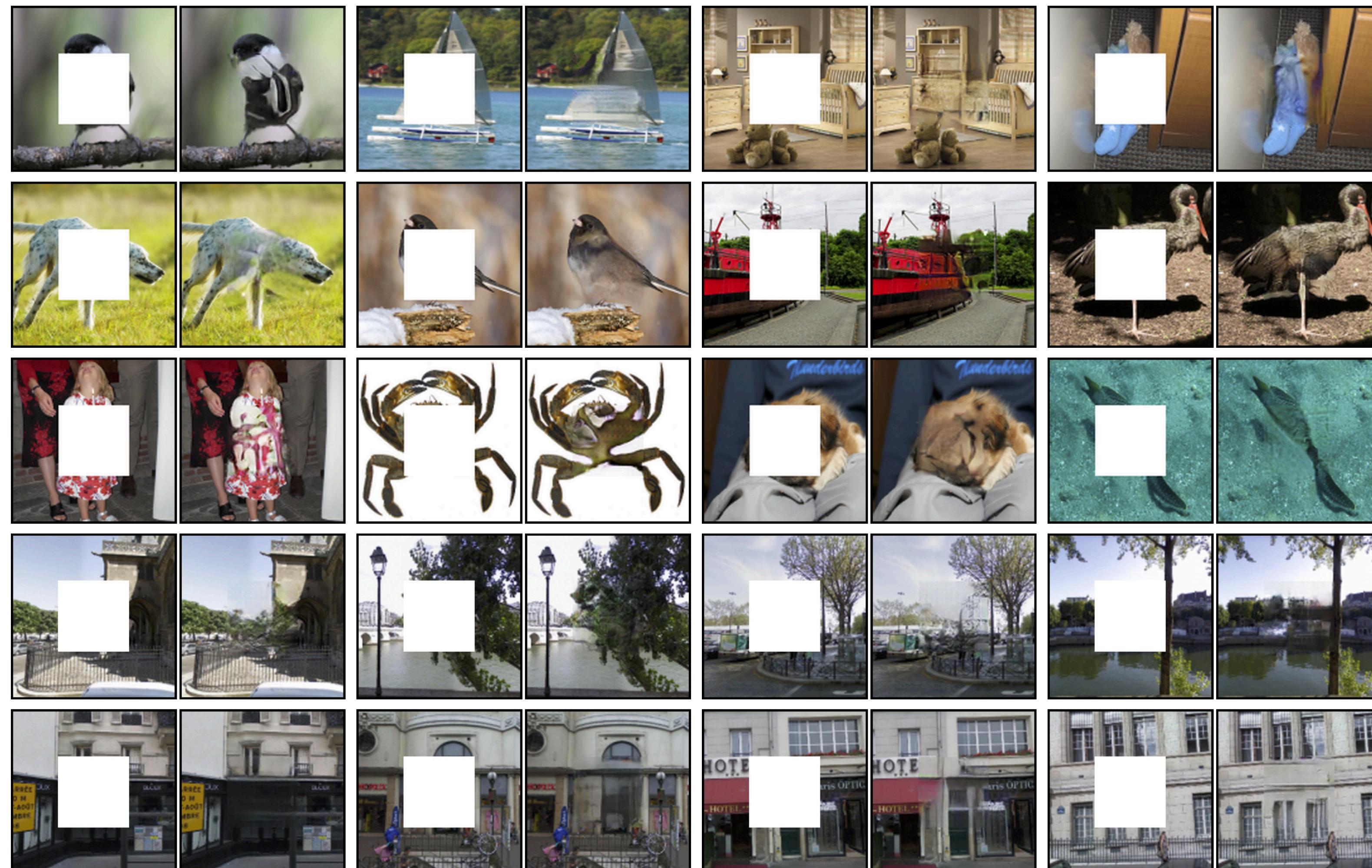


Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Rafael Gómez-Bombarelli^{†‡} , Jennifer N. Wei^{‡#} , David Duvenaud^{†#} , José Miguel Hernández-Lobato^{§#} , Benjamín Sánchez-Lengeling[‡], Dennis Sheberla[‡] , Jorge Aguilera-Iparraguirre[†], Timothy D. Hirzel[†], Ryan P. Adams[¶] , and Alán Aspuru-Guzik^{*‡⊥}

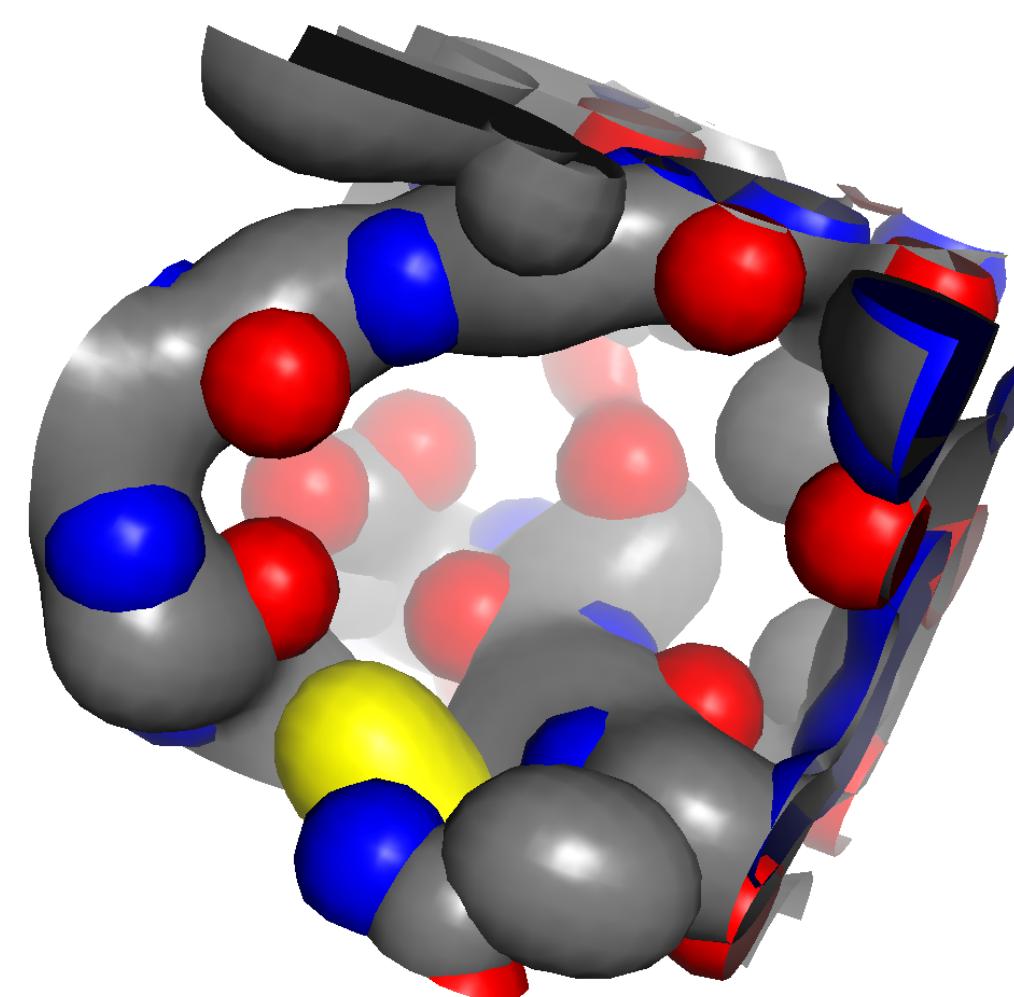


Context Encoding

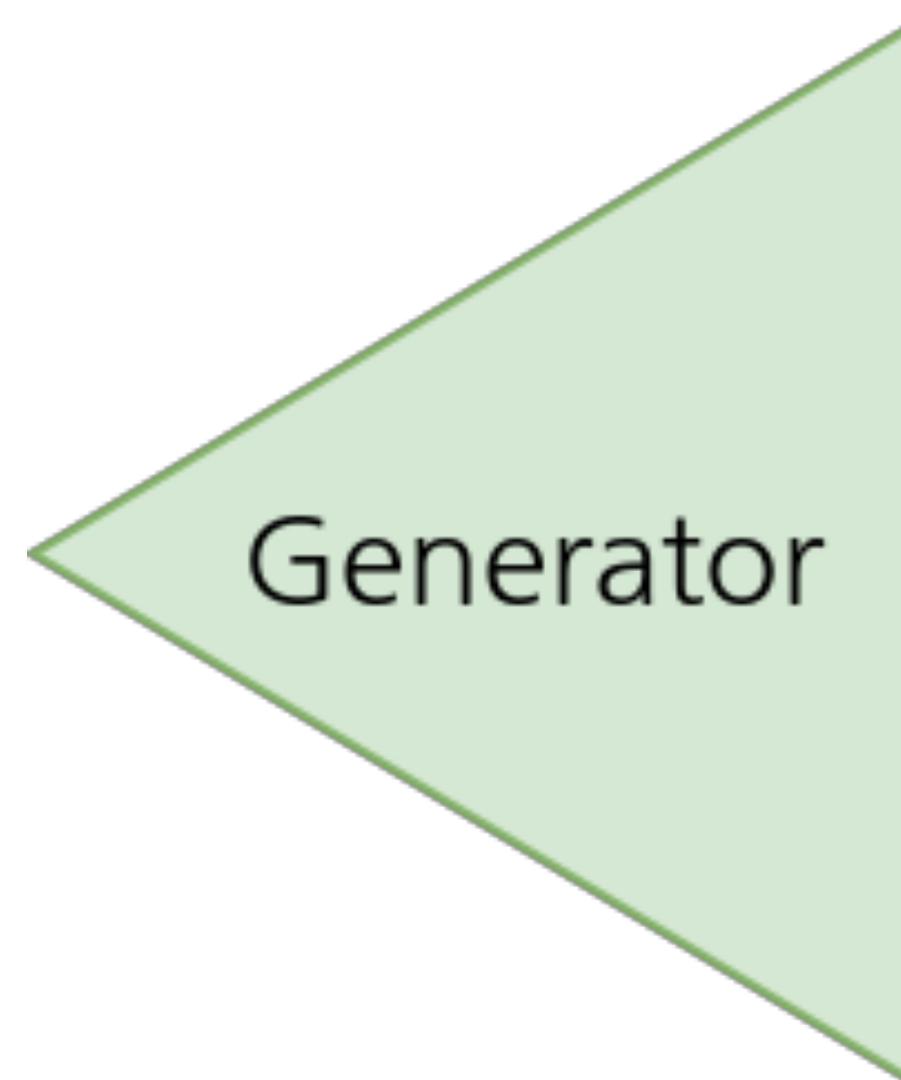
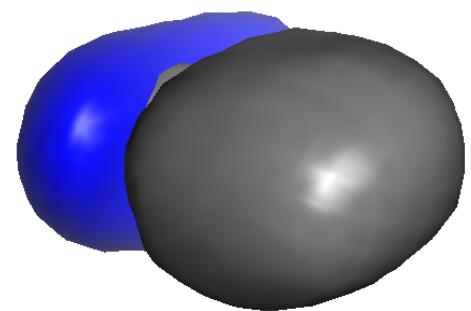


http://people.eecs.berkeley.edu/~pathak/context_encoder/

Context Encoding

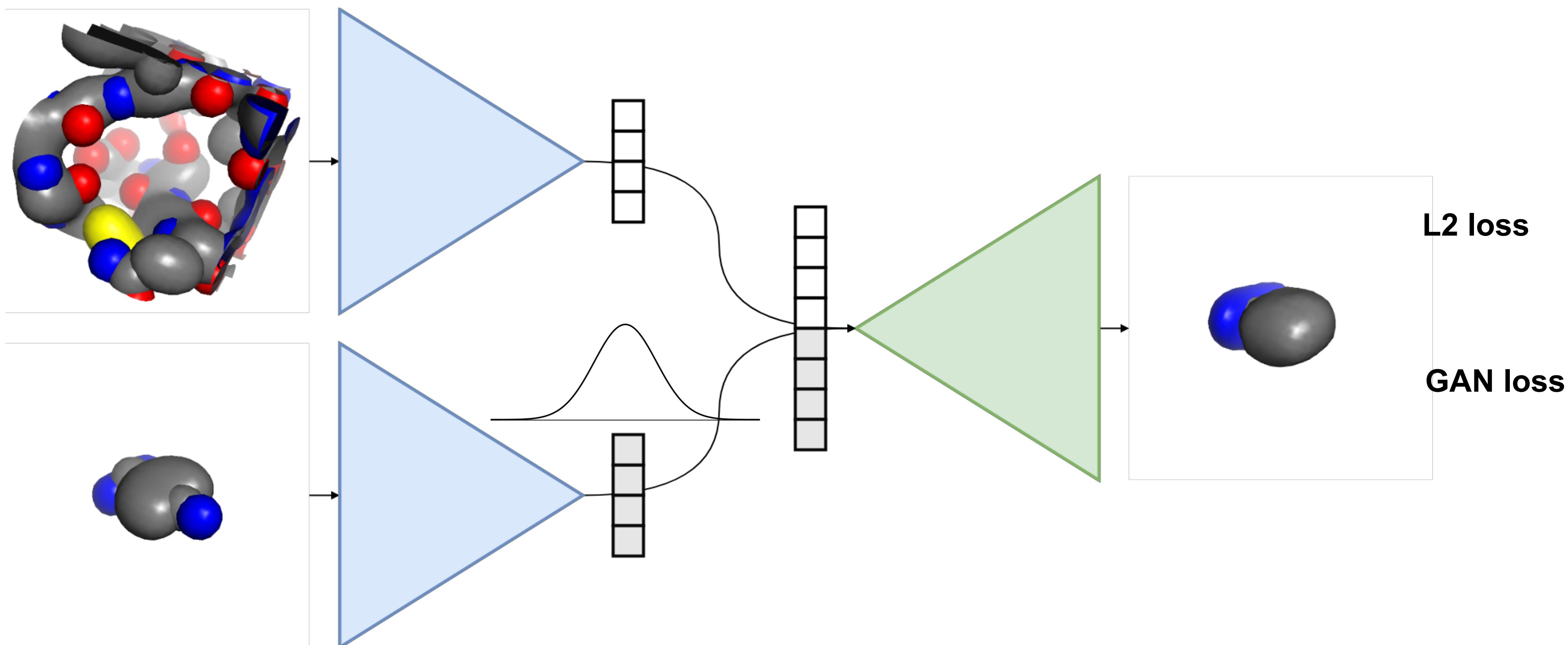


receptor grid

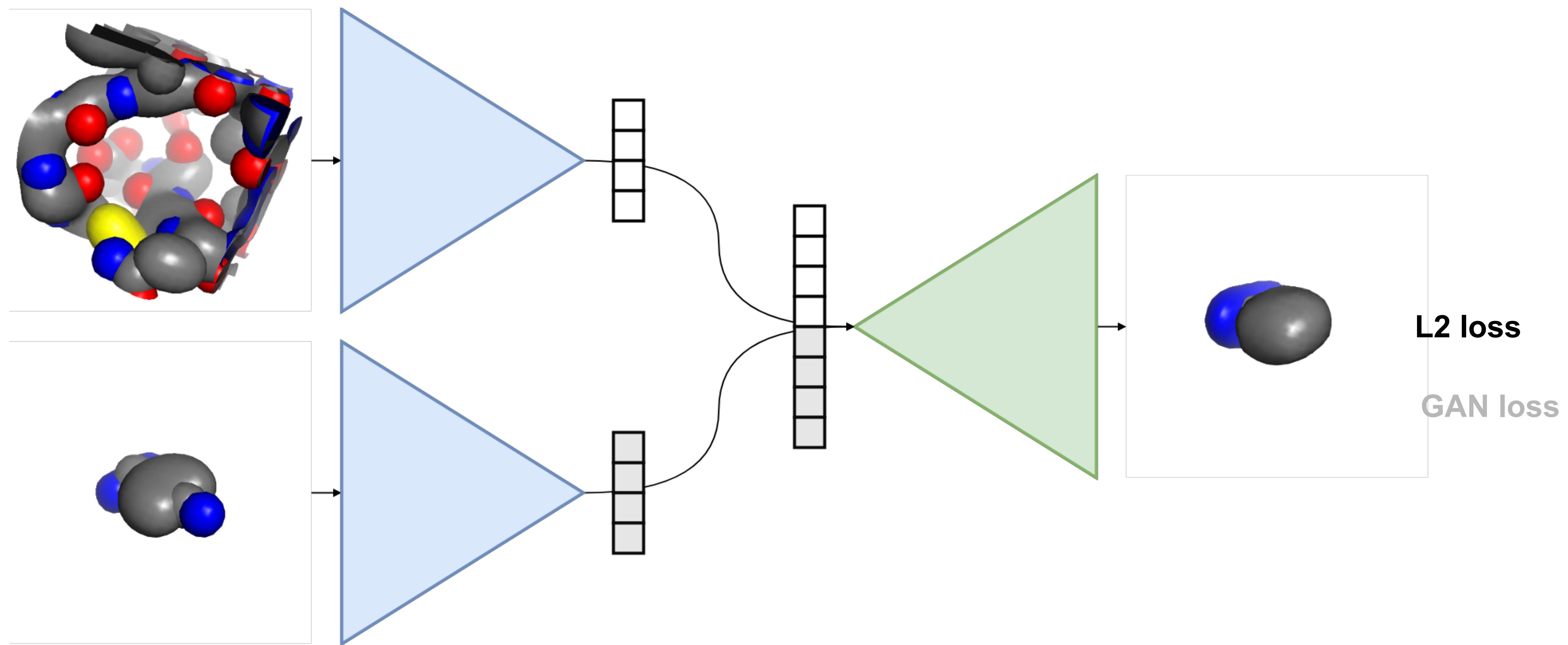


generated ligand grid

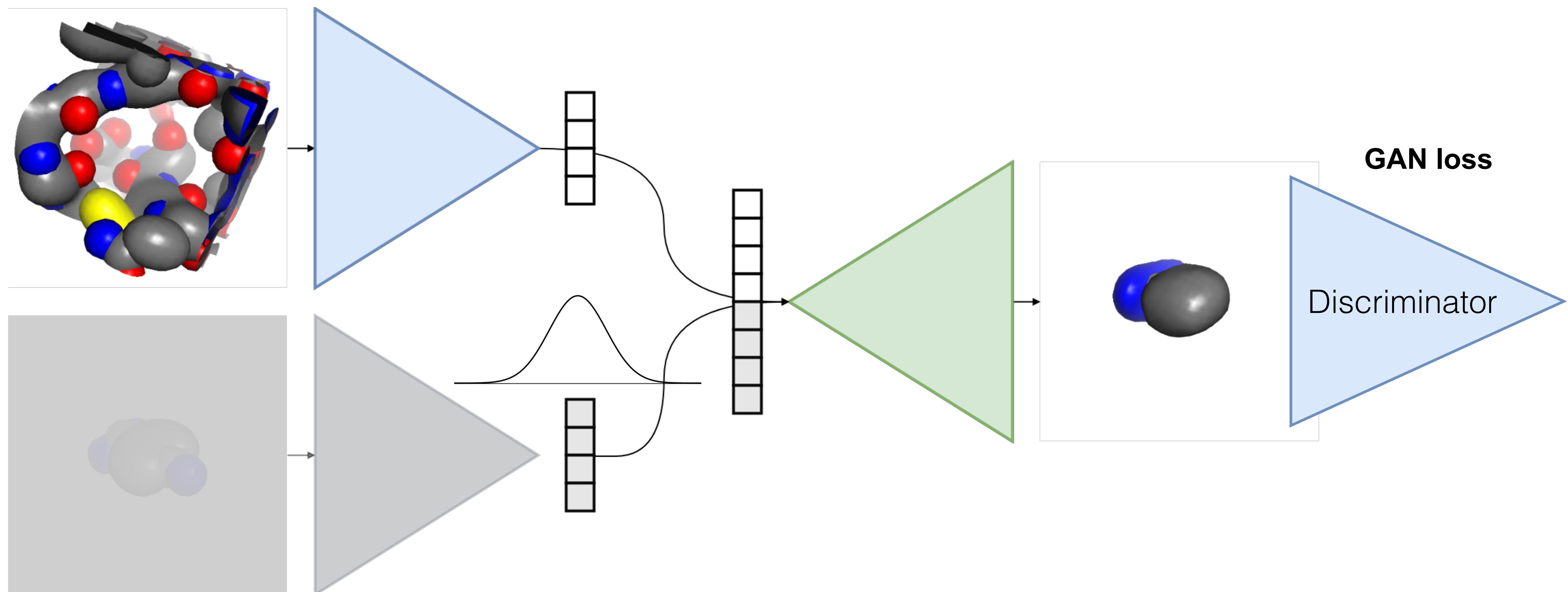
Receptor-Conditional Ligand-Variational Model



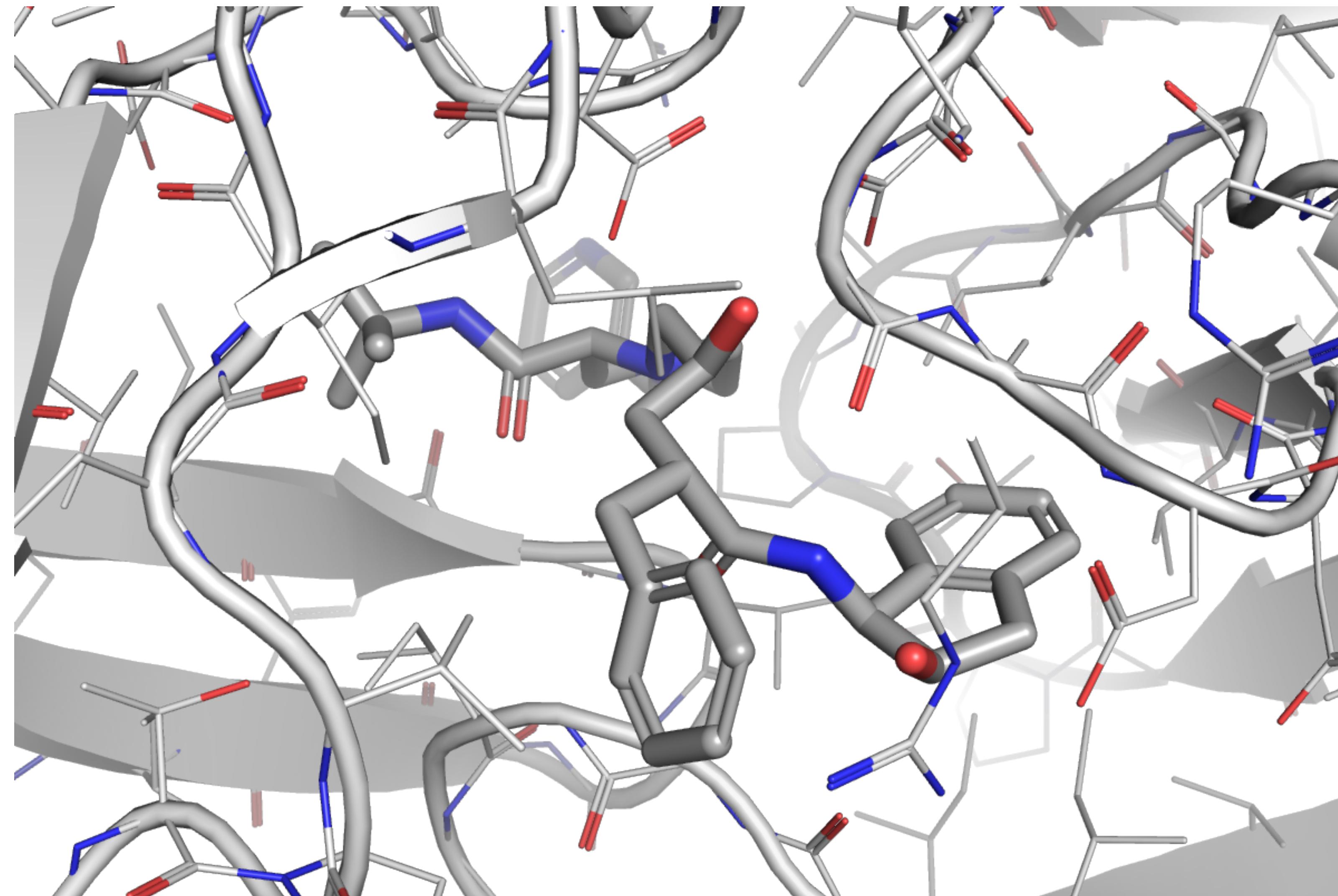
Receptor-Conditional Ligand-Variational Model



Receptor-Conditional Ligand-Variational Model

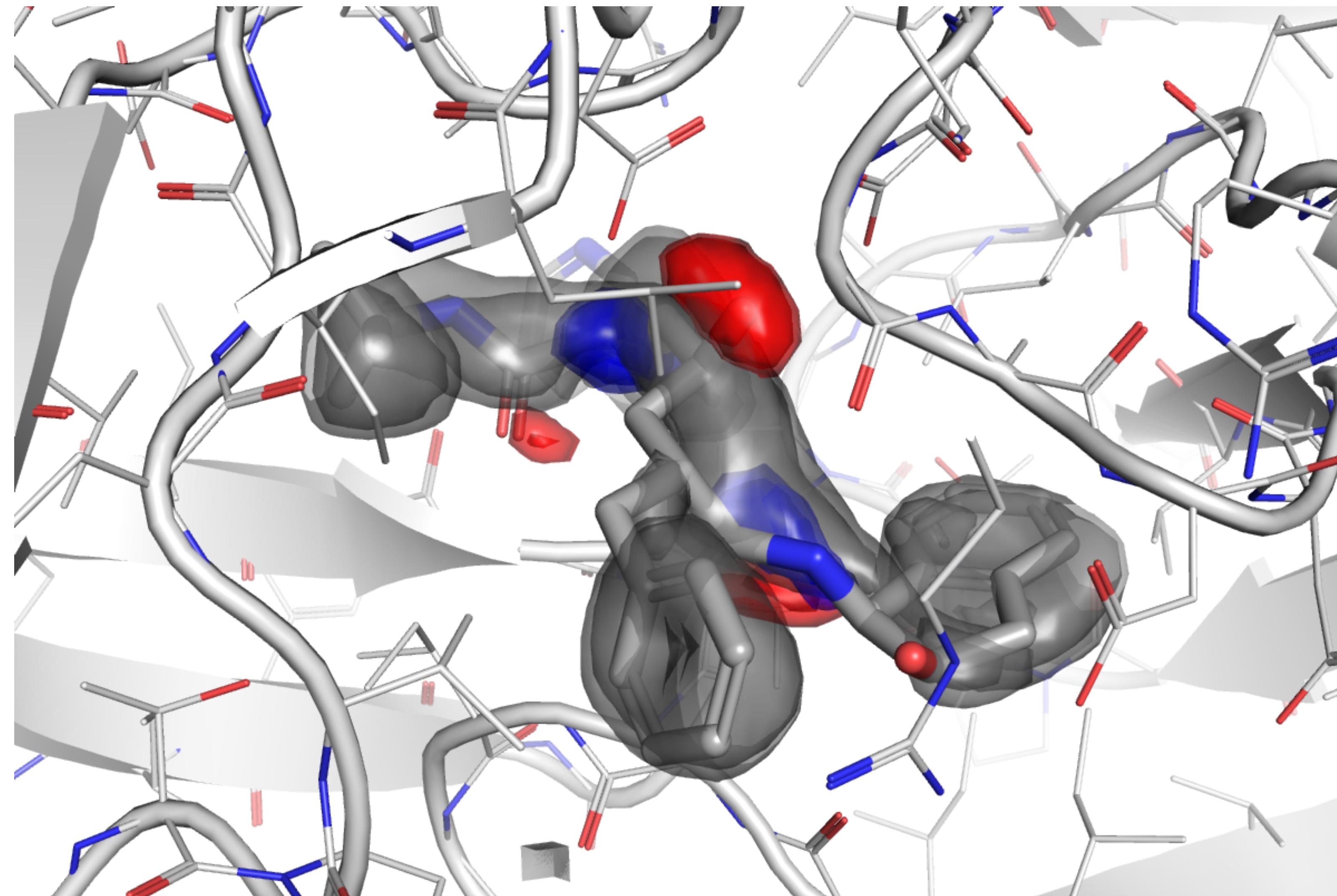


Autoencoding Examples



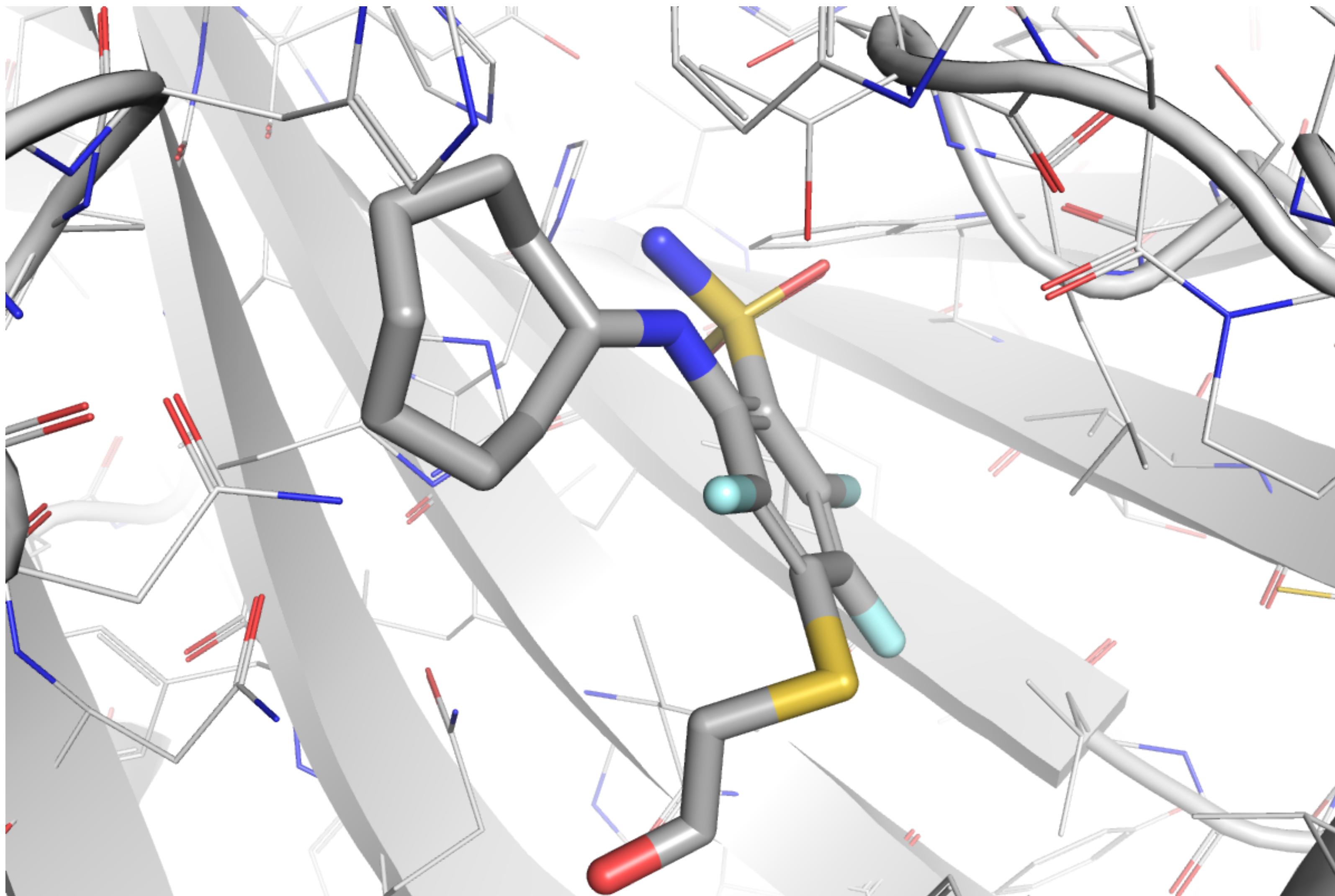
2AVO

Autoencoding Examples



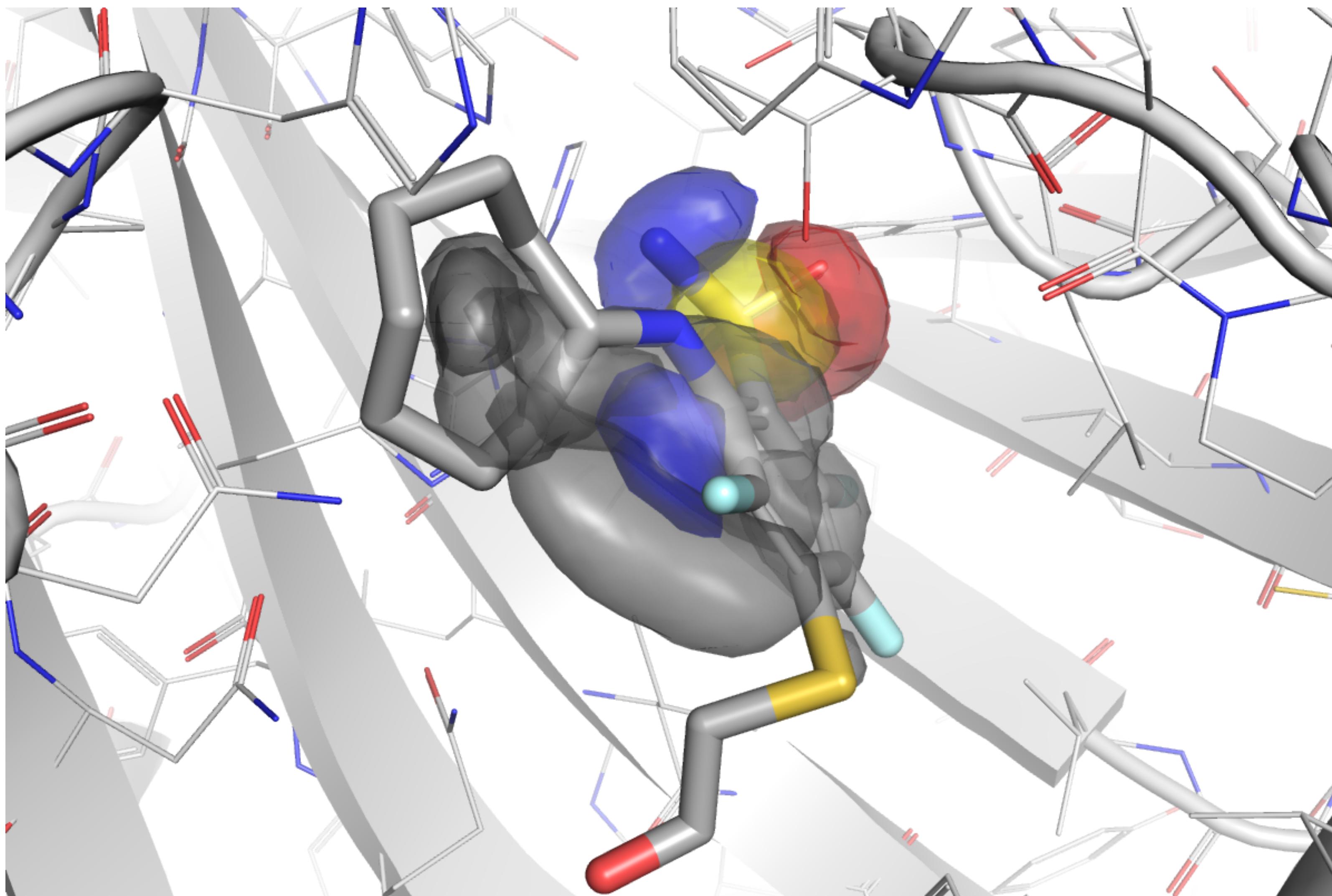
2AVO

Autoencoding Examples



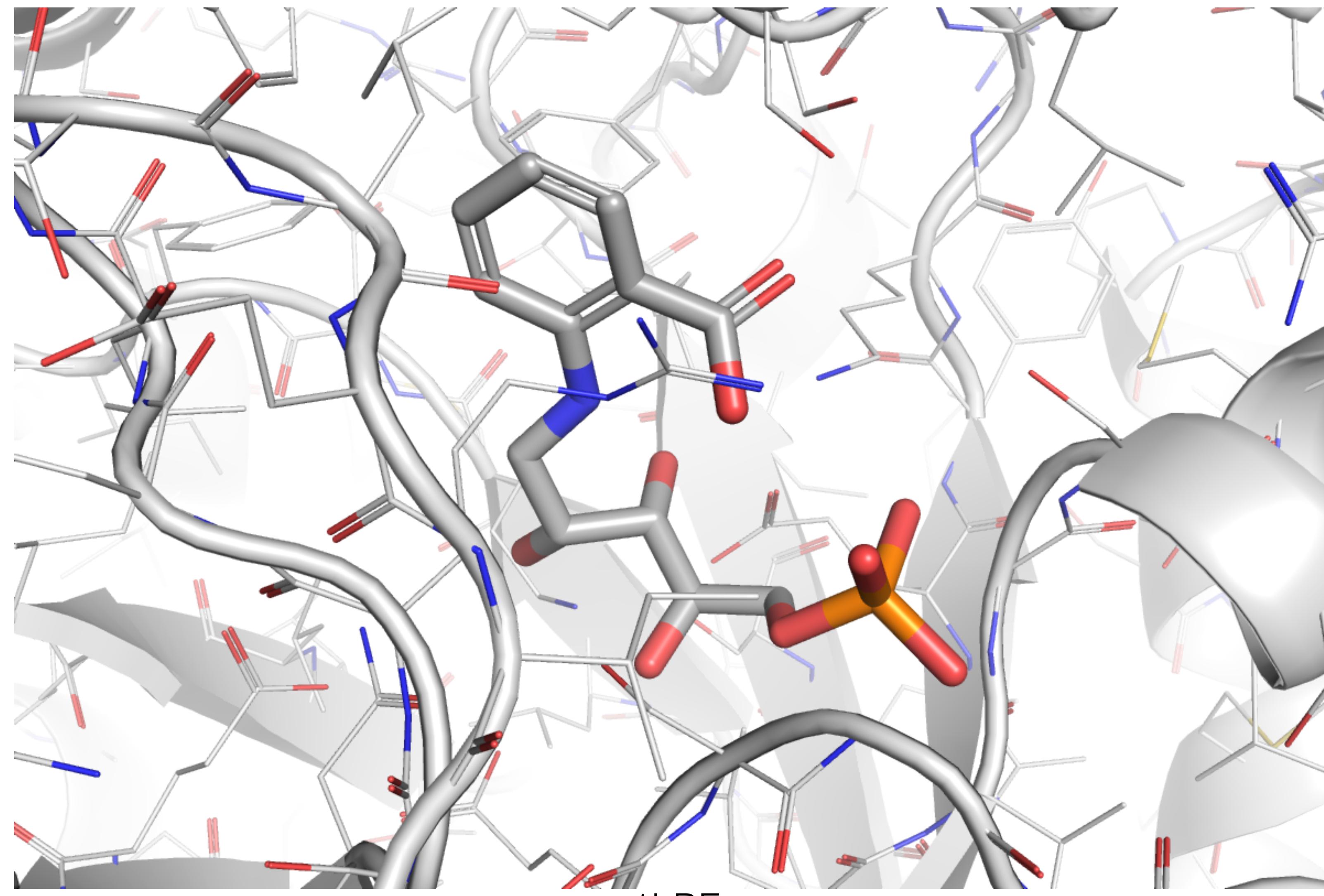
4PYX

Autoencoding Examples



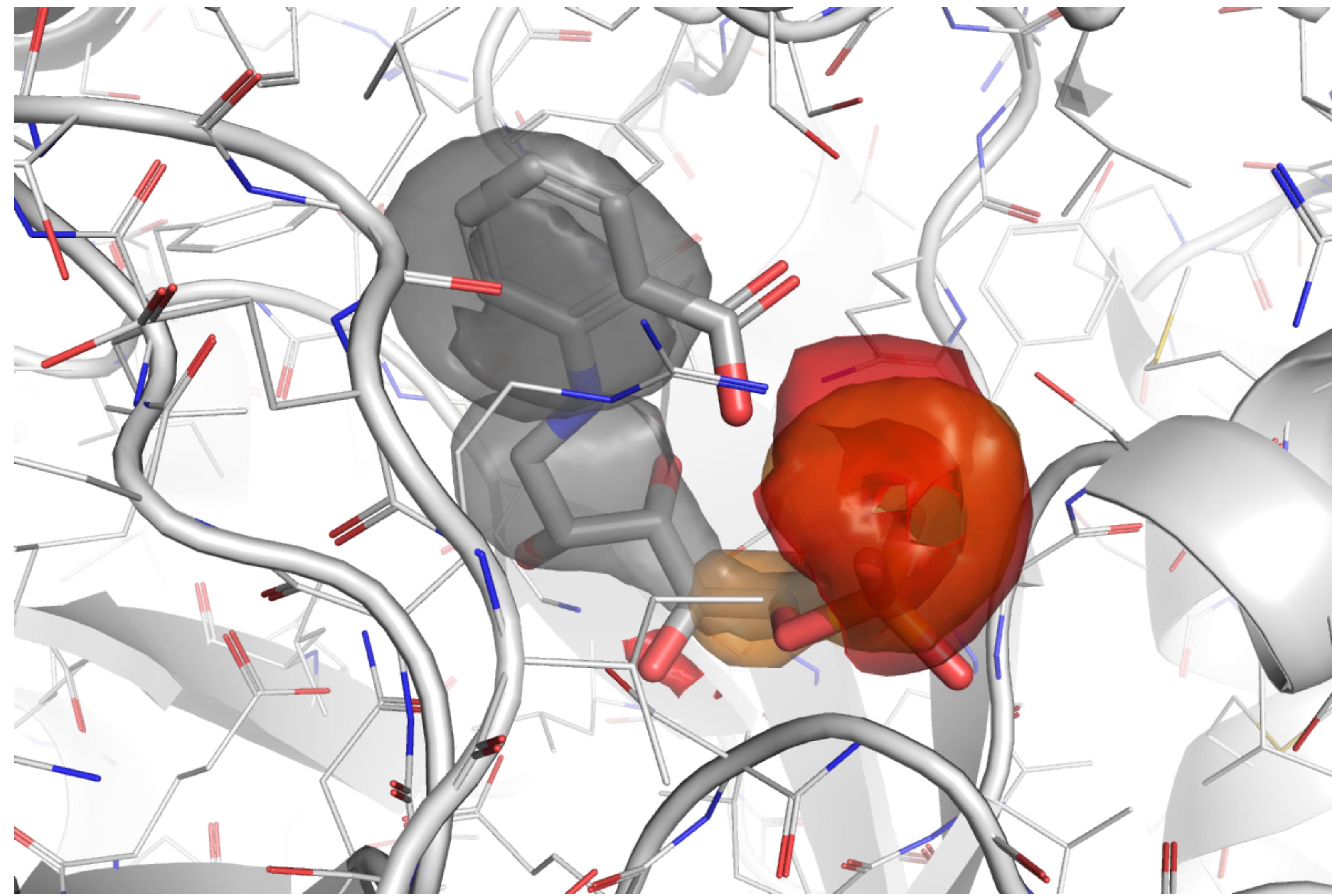
4PYX

Autoencoding Examples



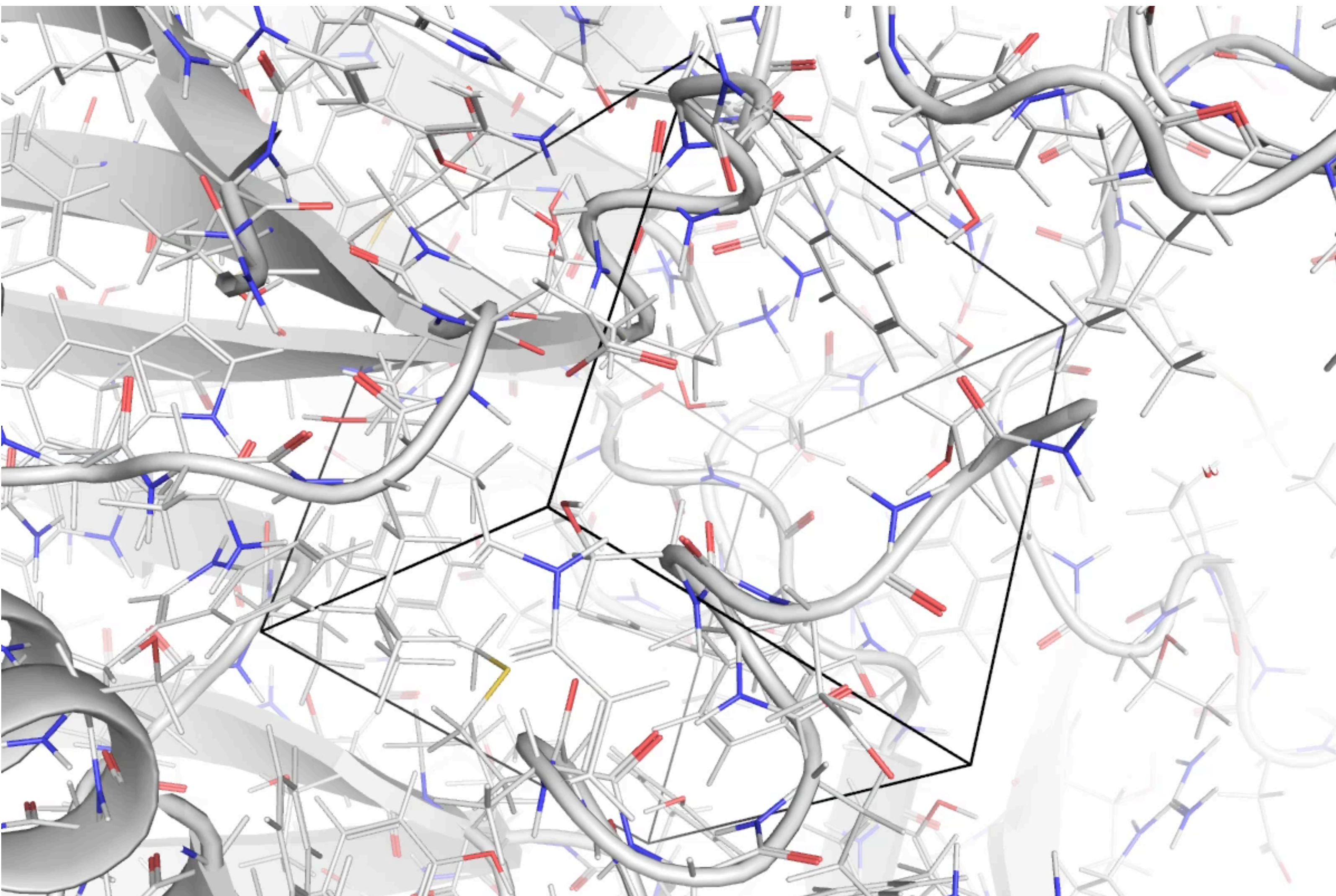
1LBF

Autoencoding Examples

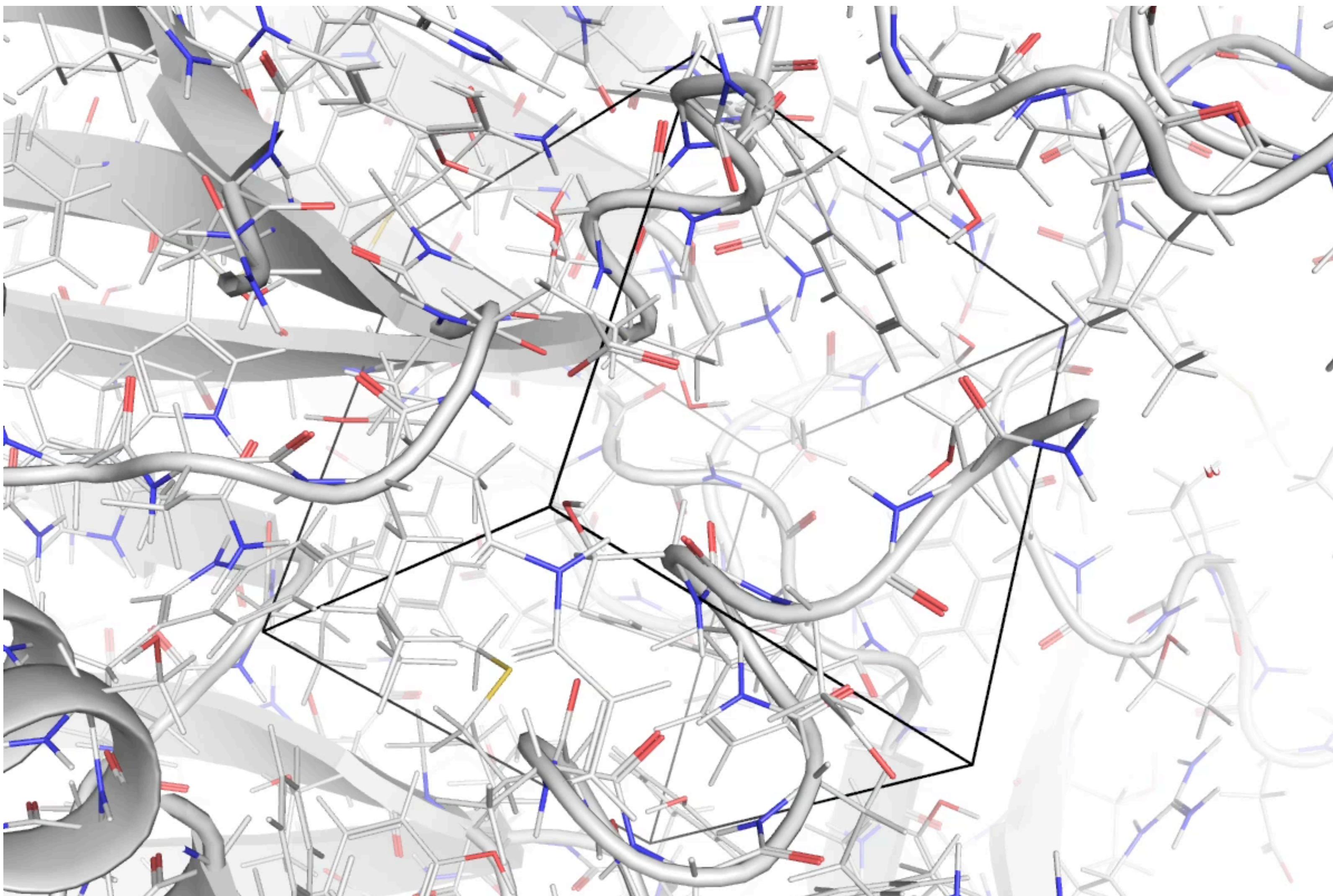


1LBF

Conditioning on the Receptor

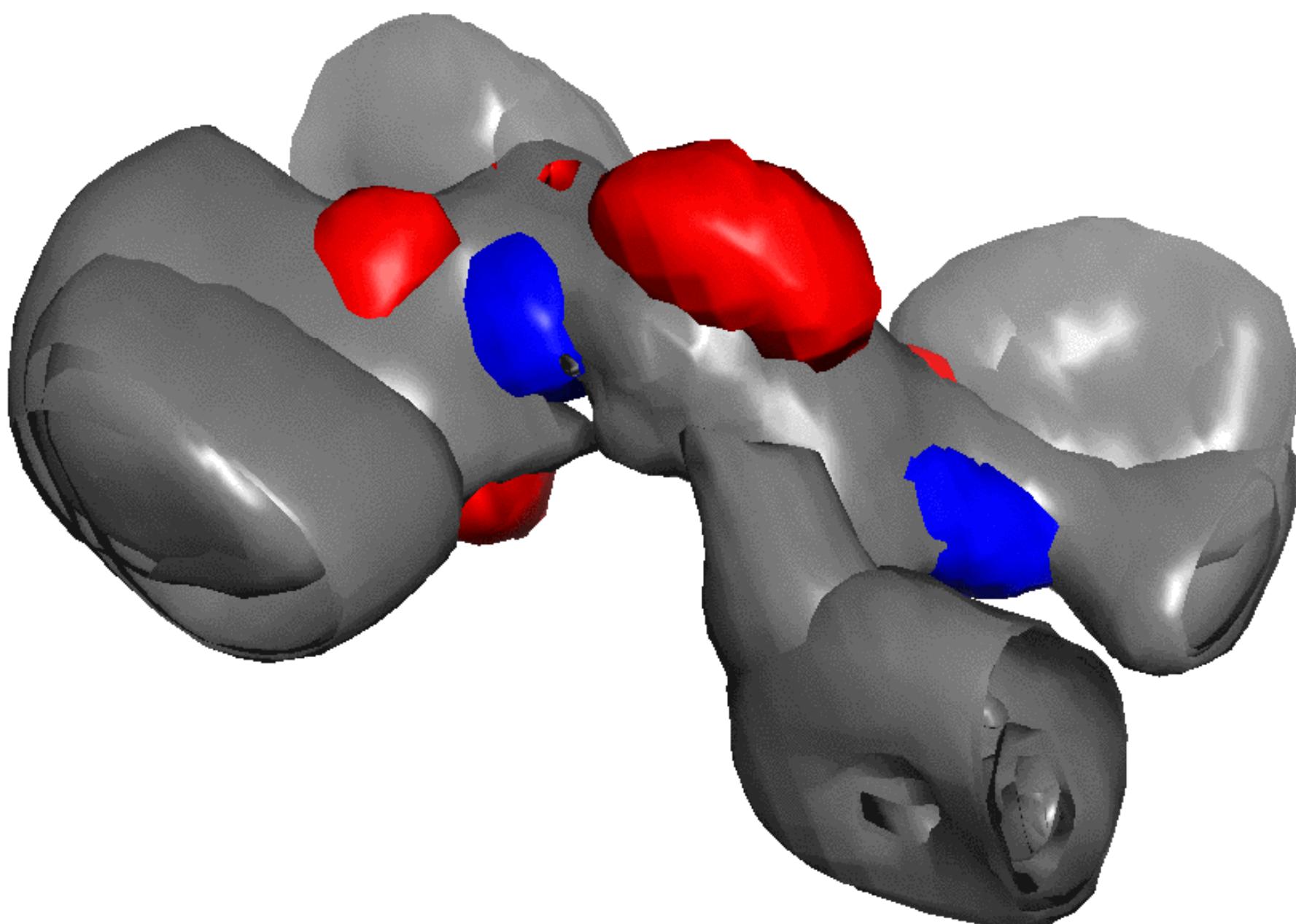


Conditioning on the Receptor



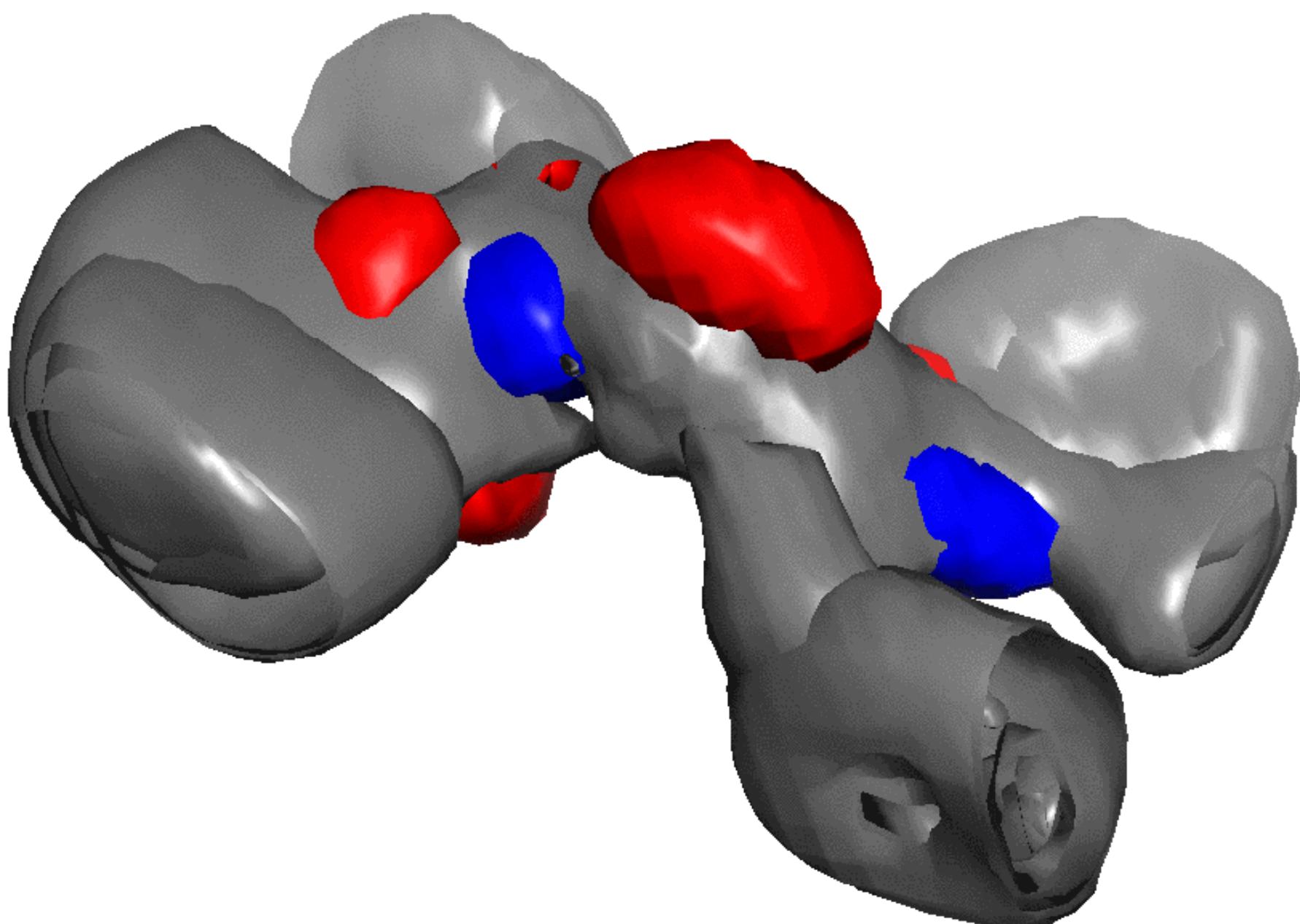
Atom Fitting

$$a^* = \operatorname{argmin}_a \|d - D(a)\|_2^2 + \lambda E(a)$$

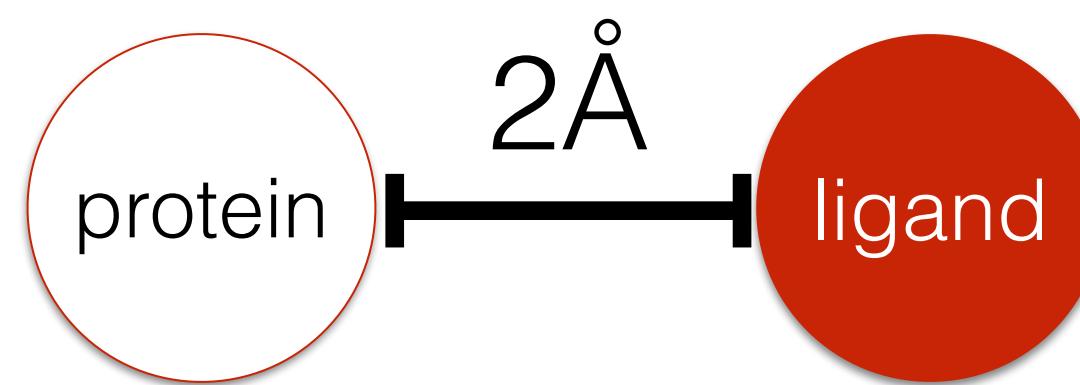


Atom Fitting

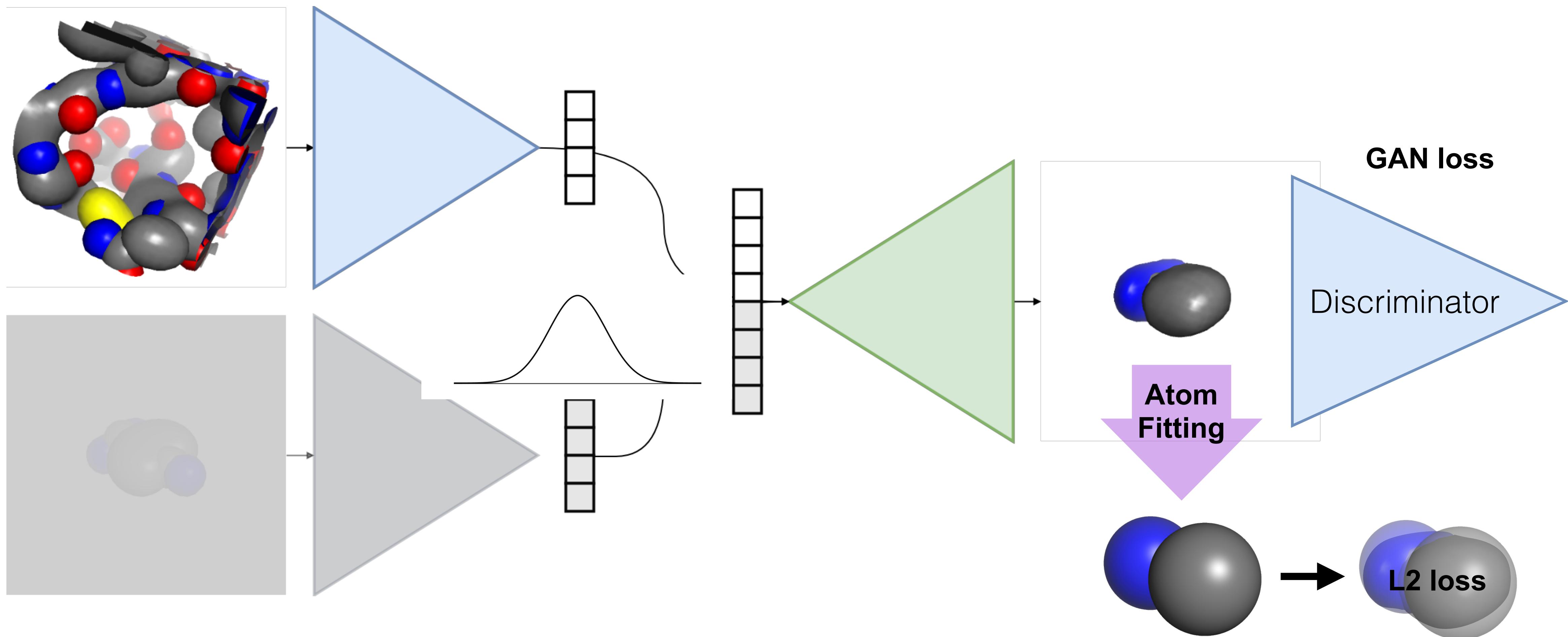
$$a^* = \operatorname{argmin}_a \|d - D(a)\|_2^2 + \lambda E(a)$$



Two Atom Toy System



Atom Fitting Loss



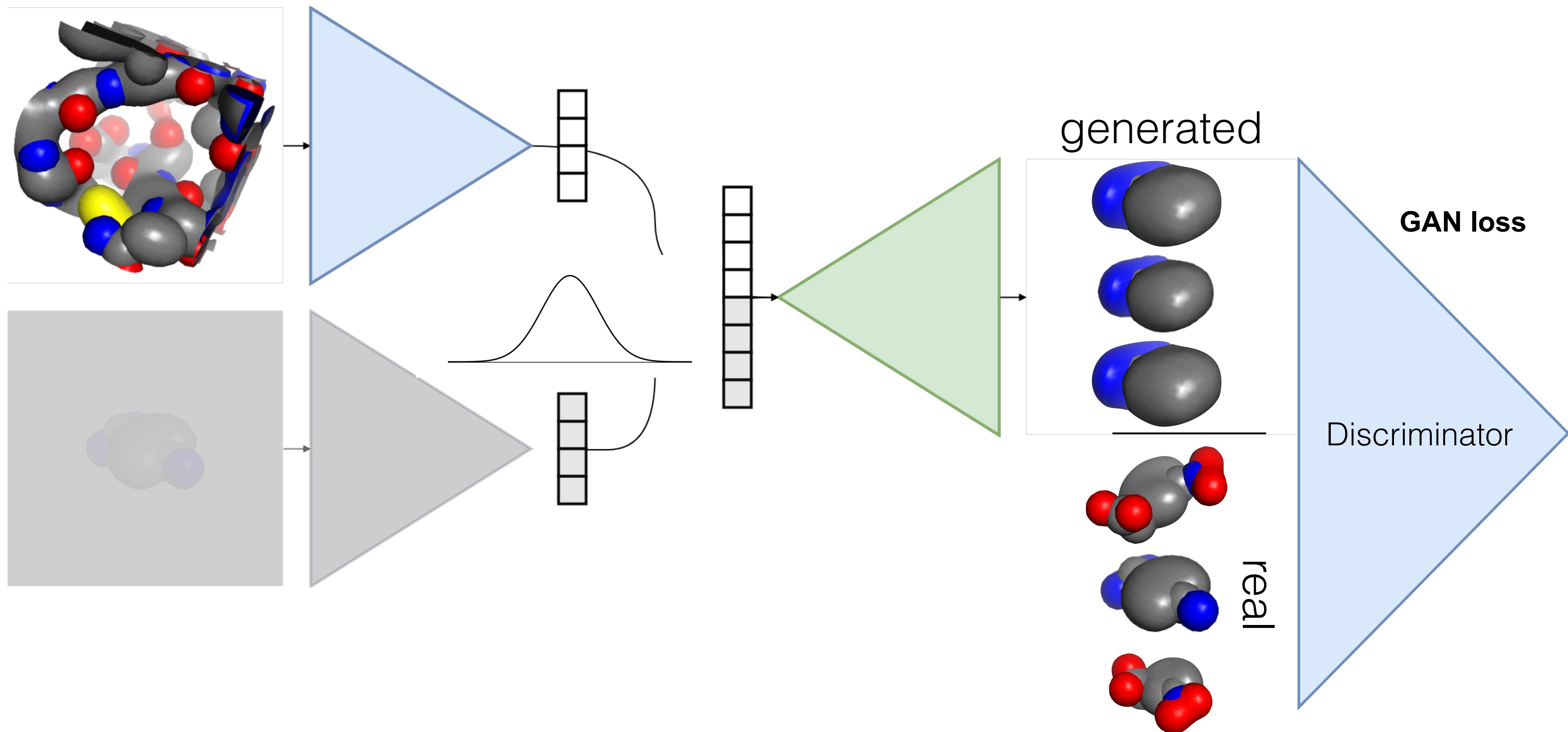
Atom Fitting Loss

Two atom toy system

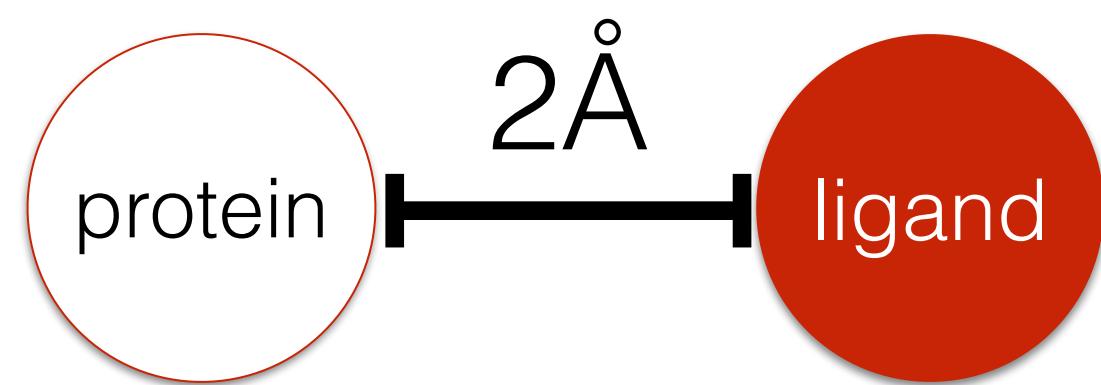
Atom Fitting Loss

Two atom toy system

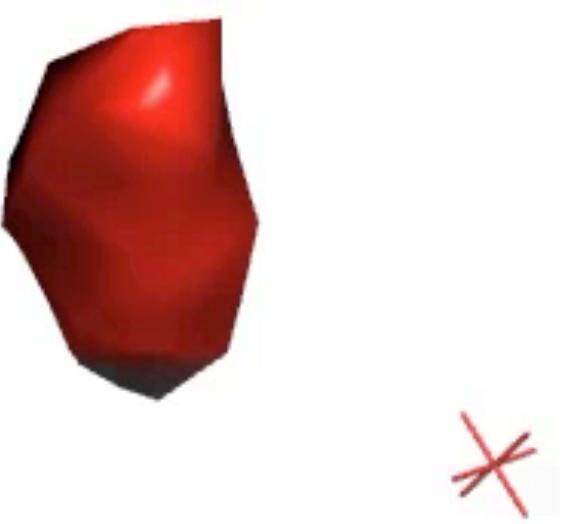
Batch Discrimination



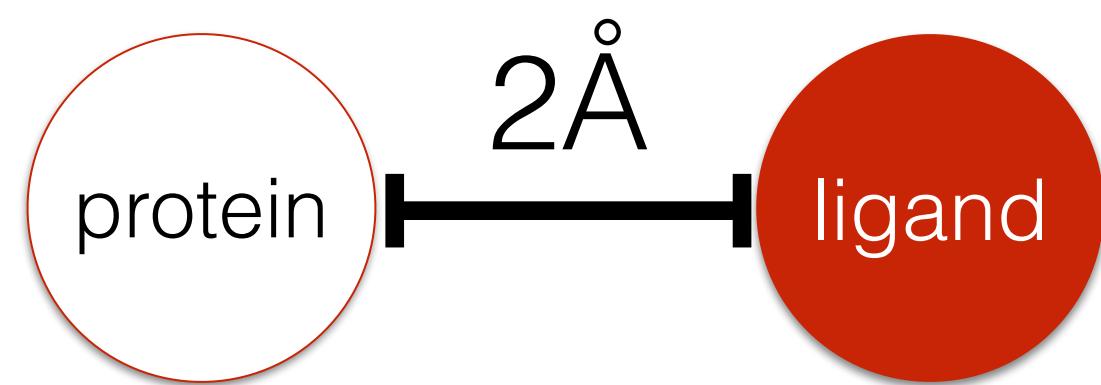
Atom Fitting + Batch Discrimination



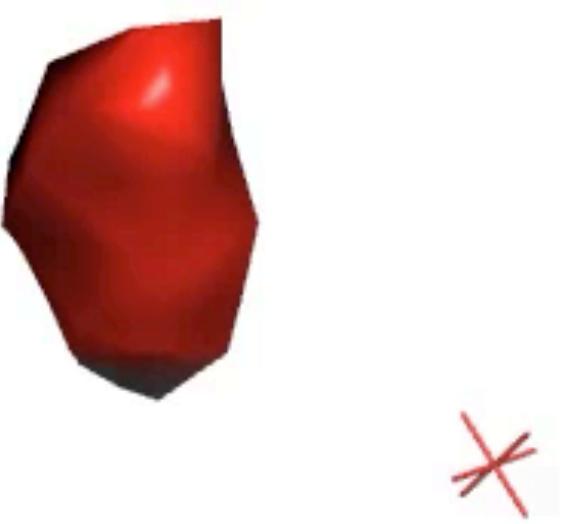
Two atom toy system



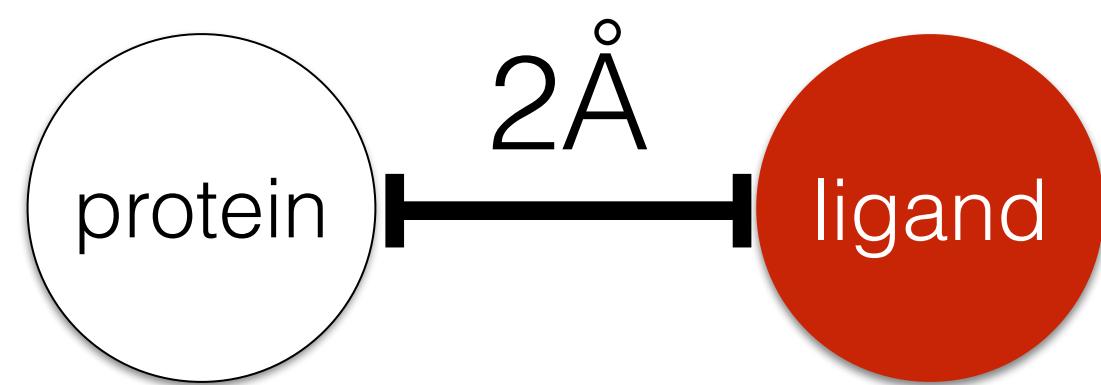
Atom Fitting + Batch Discrimination



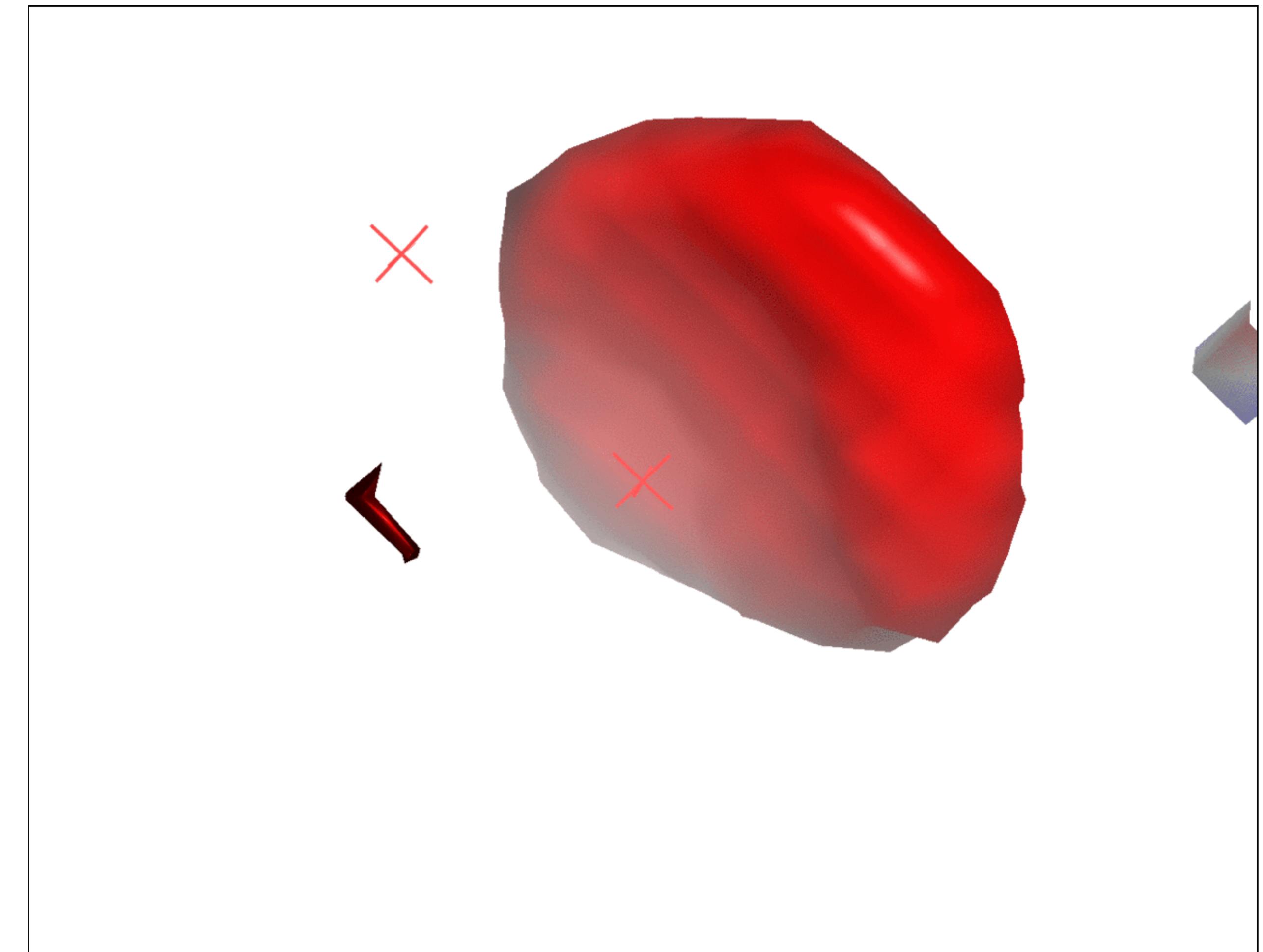
Two atom toy system



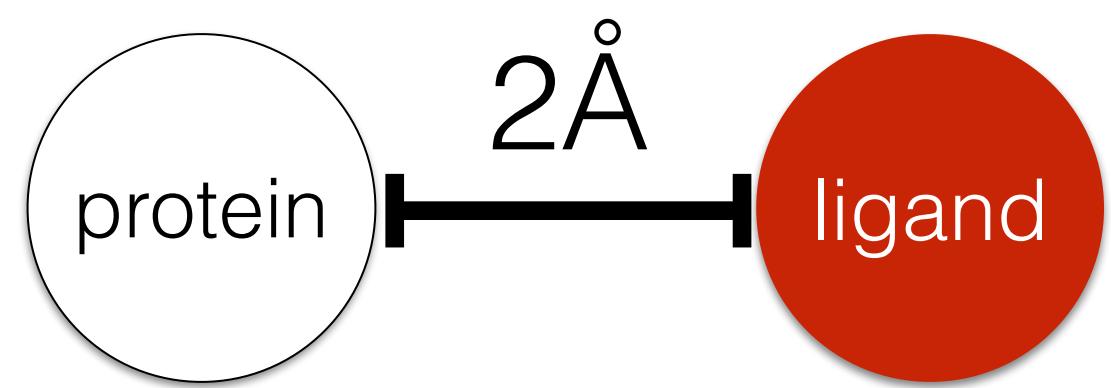
Interpolating



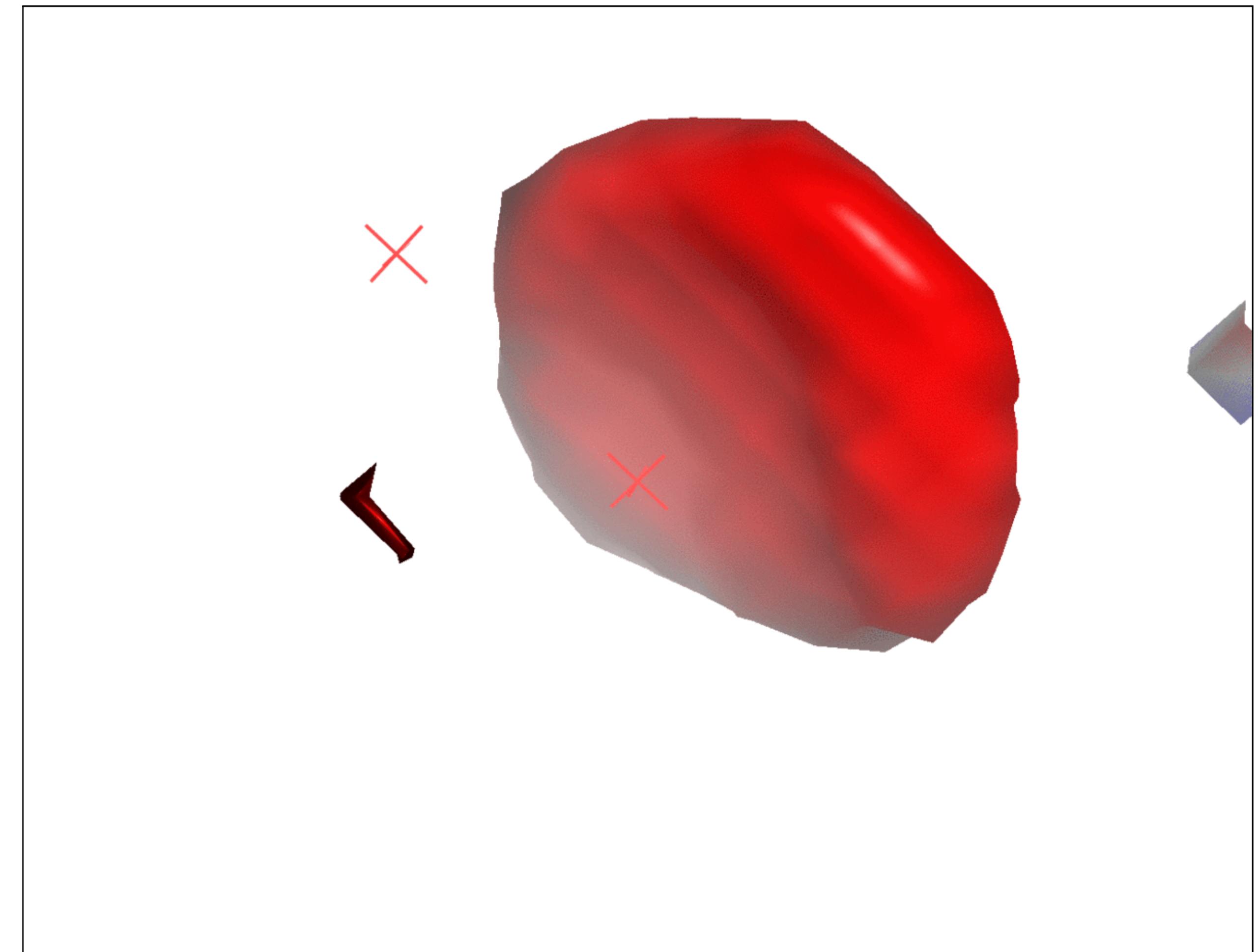
Two atom toy system



Interpolating



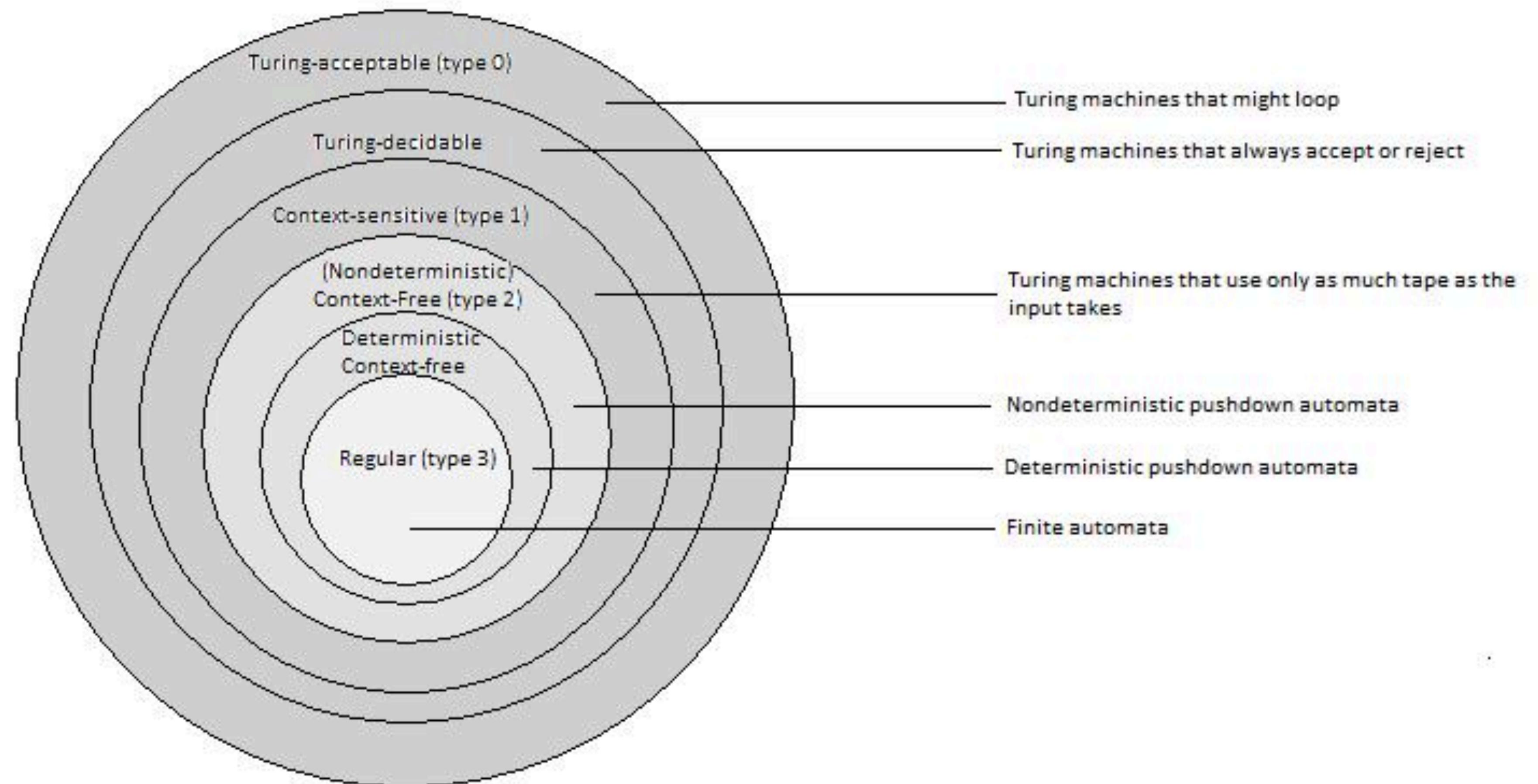
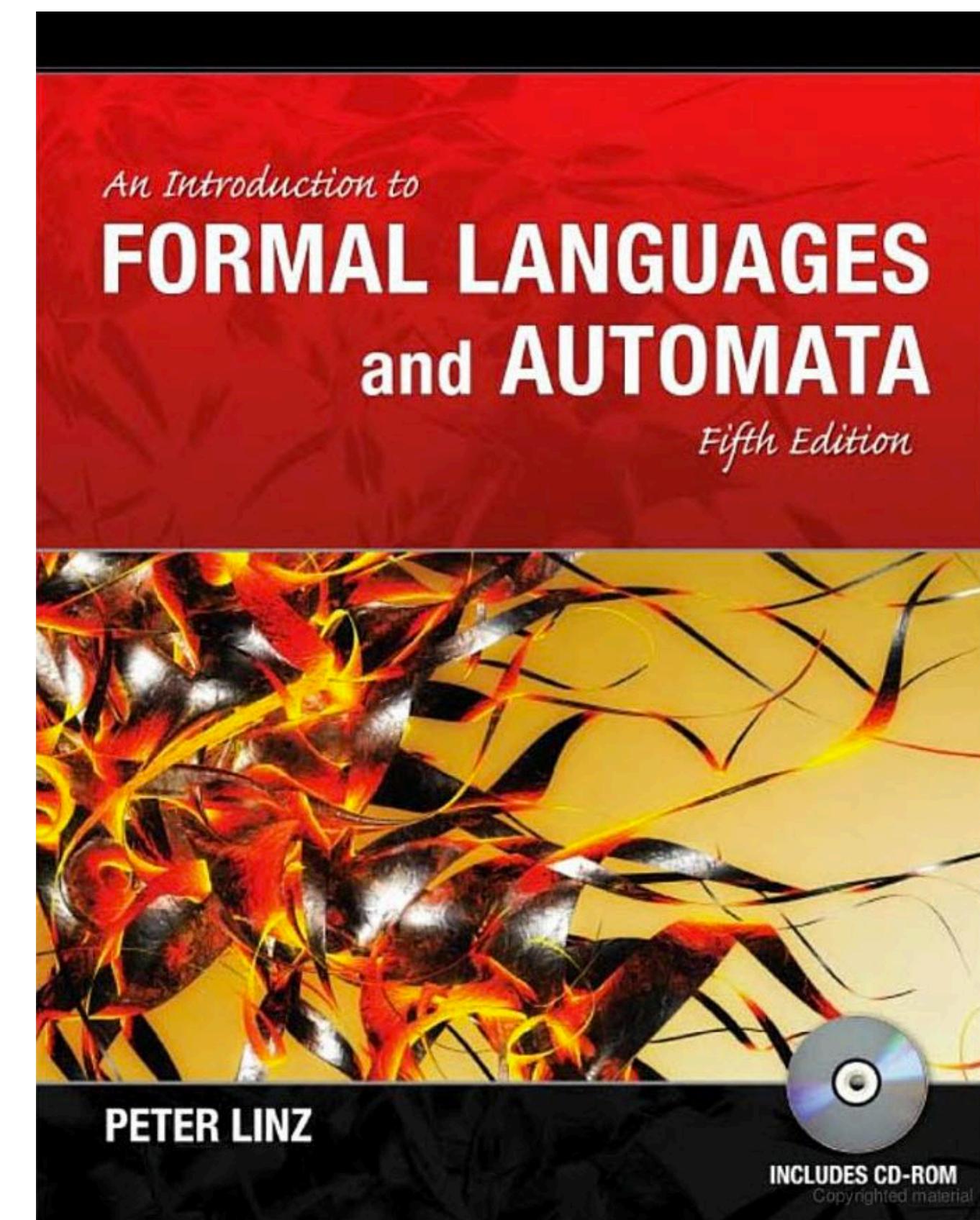
Two atom toy system



LALRNN

Removing the third dimension

Chomsky Hierarchy



Grammars

Balanced
Parentheses

$$\begin{aligned} S &\rightarrow \epsilon \\ S &\rightarrow (S) \\ S &\rightarrow SS \end{aligned}$$

$$\begin{array}{c} () \\ (()) () () \\ () () () () \end{array}$$

Palindromes

$$\begin{aligned} S &\rightarrow \epsilon \\ S &\rightarrow aSa \\ S &\rightarrow bSb \end{aligned}$$

$$\begin{array}{c} aa \\ babbab \\ abbaabba \end{array}$$

Arithmetic

$$\begin{array}{c} E ::= id \\ | \text{ num} \\ | E + E \\ | E * E \\ | (E) \end{array}$$

$$\begin{array}{c} 3 + 4 * 5 \\ (3 + 4) * 5 \end{array}$$

Grammars

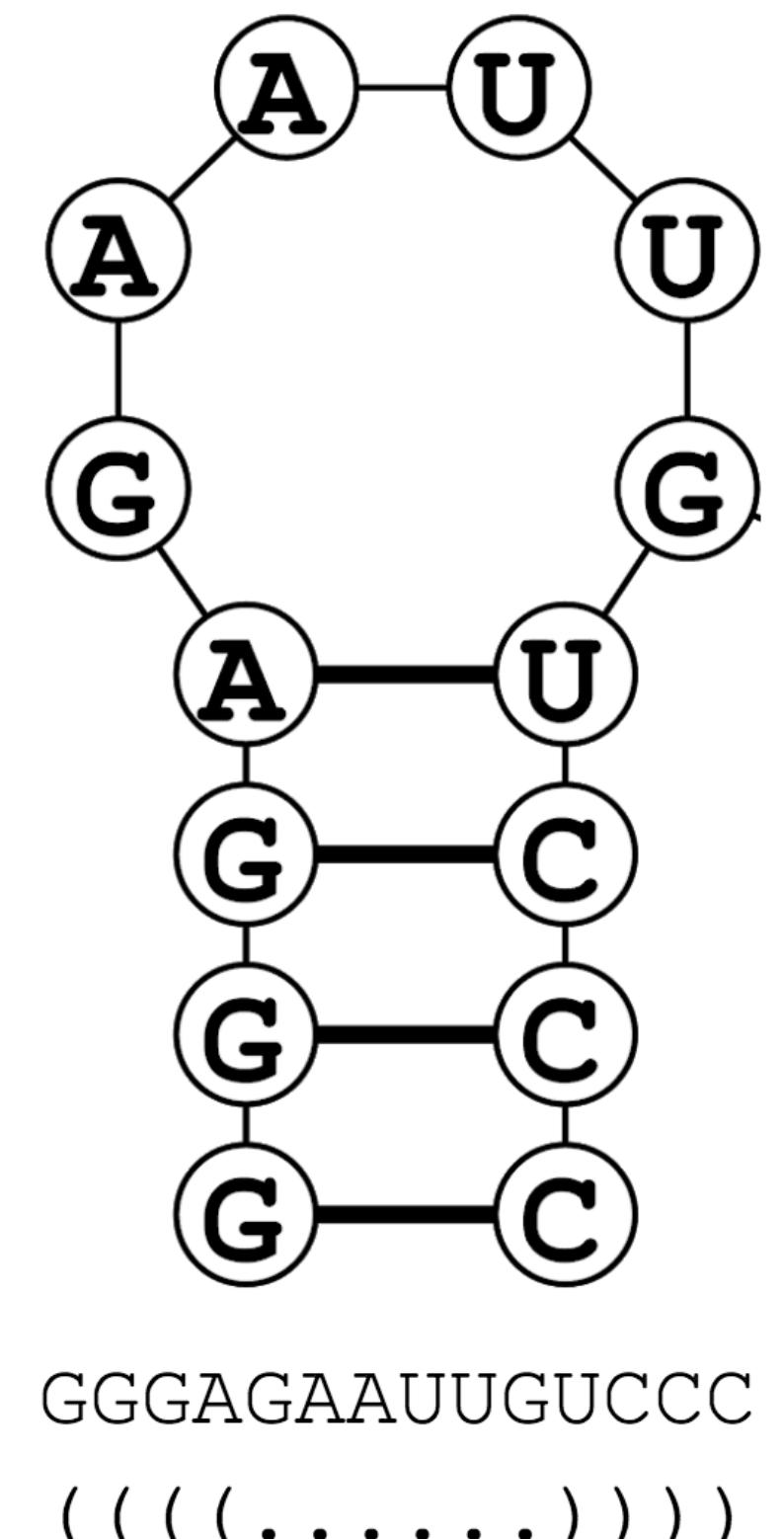
Balanced Parentheses

$$S \rightarrow \epsilon$$

$$S \rightarrow (S)$$

$$S \rightarrow SS$$

$($
 $((())) () (())$
 $() () () () ()$



Palindromes

$$S \rightarrow \epsilon$$

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

aa

babbab

abbaabba

Arithmetic

$$E ::= \text{id}$$

$$| \text{num}$$

$$| E + E$$

$$| E * E$$

$$| (E)$$

3 + 4 * 5

$(3 + 4) * 5$

Bottom Up Parsing (LALR)

A PDA can be implemented with a *parse table*

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$S \rightarrow E\$$
 $E \rightarrow T + E$
 $E \rightarrow T$
 $T \rightarrow \text{identifier}$

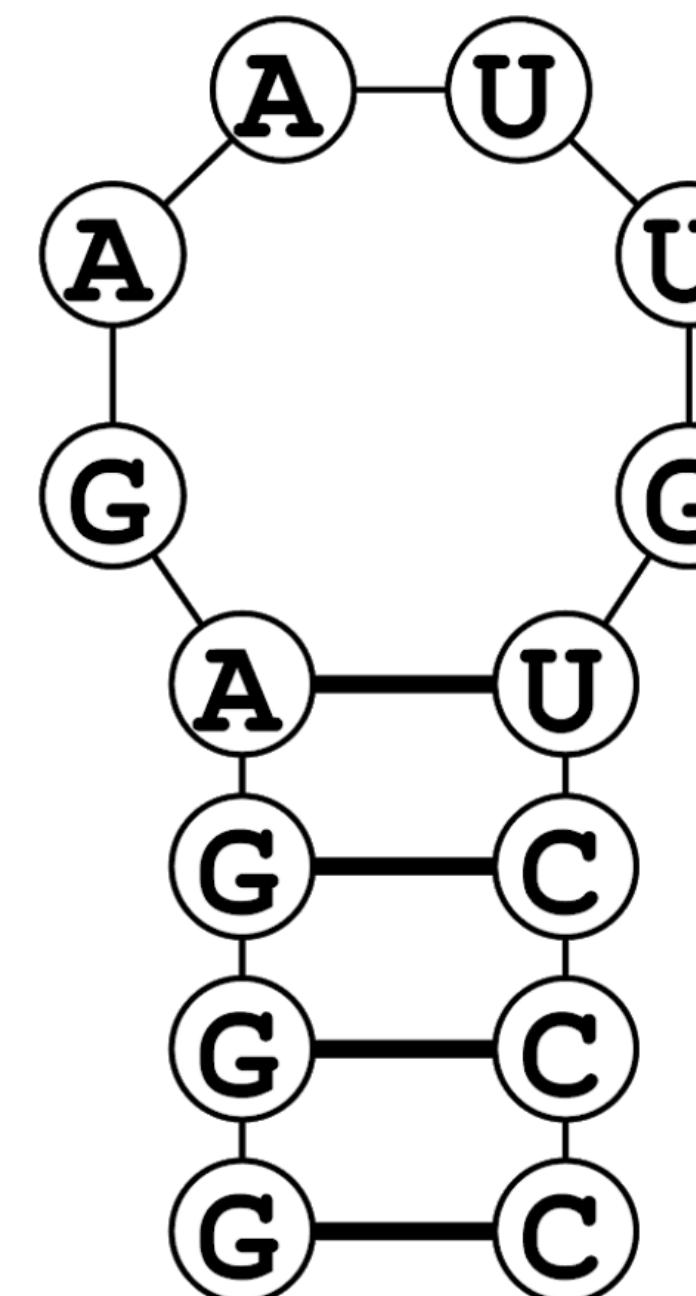
states != rules

$x + y\$$

```

while(true)
  s = state on top of stack
  a = current input token
  if(action[s][a] == sN)           shift
    push N
    a = next input token
  else if(action[s][a] == rR)       reduce
    remove rhs of rule R from stack
    x = lhs of rule R
    N = state on top of stack
    push goto[N][x]
  else if(action[s][a] == a)        accept :-)
    return success
  else
    return failure
  
```

RNA Secondary Structure



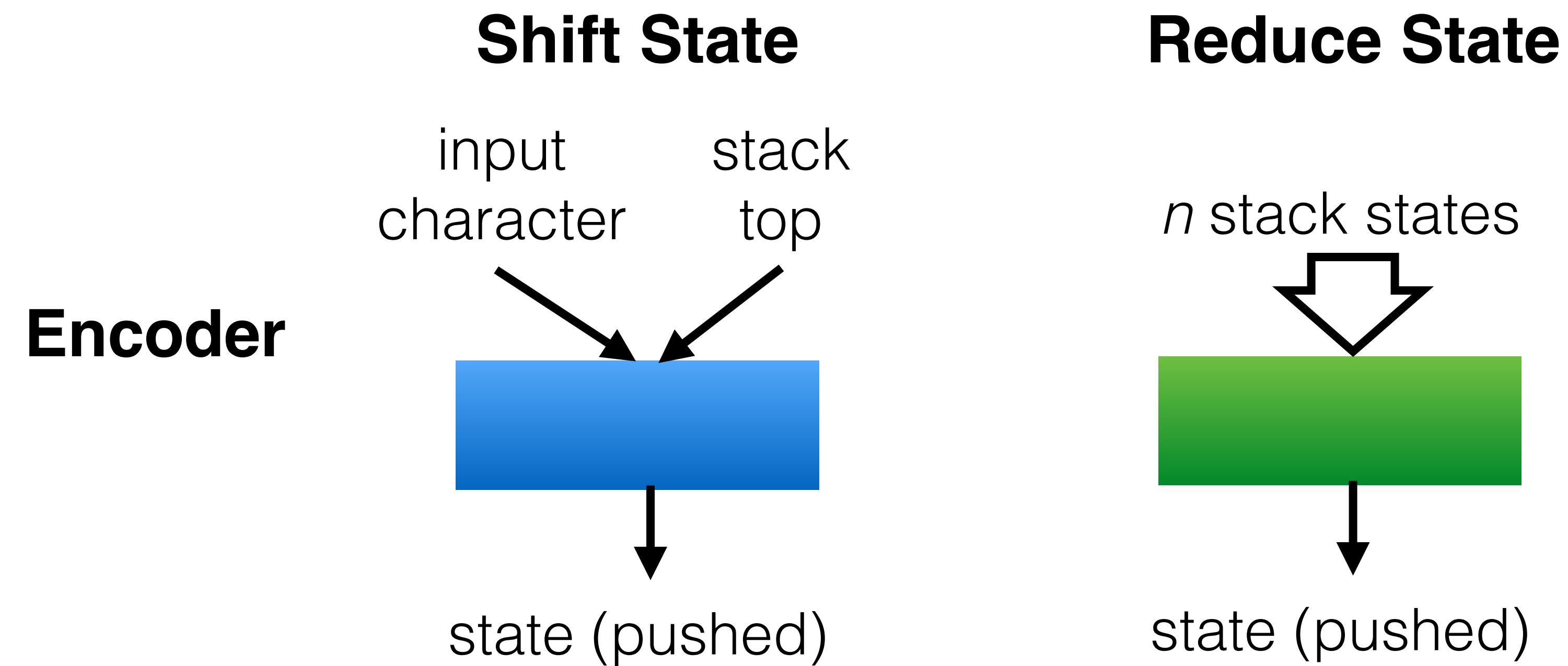
GGGAGAAUUGUCCC
 ((((.....))))

$S \rightarrow \cdot$
 $S \rightarrow ()$
 $S \rightarrow (S)$
 $S \rightarrow S(S)$
 $S \rightarrow S\cdot$
 $S \rightarrow S()$

state	.	()	S
0	s6	s1		g5
1	s6	s1	s7	g4
2	s6	s1	s11	g3
3	s10	s2	s9	
4	s10	s2	s8	
5	s10	s2		
6	Reduce $S \rightarrow \cdot$			
7	Reduce $S \rightarrow ()$			
8	Reduce $S \rightarrow (S)$			
9	Reduce $S \rightarrow S(S)$			
10	Reduce $S \rightarrow S\cdot$			
11	Reduce $S \rightarrow S()$			
12	END			

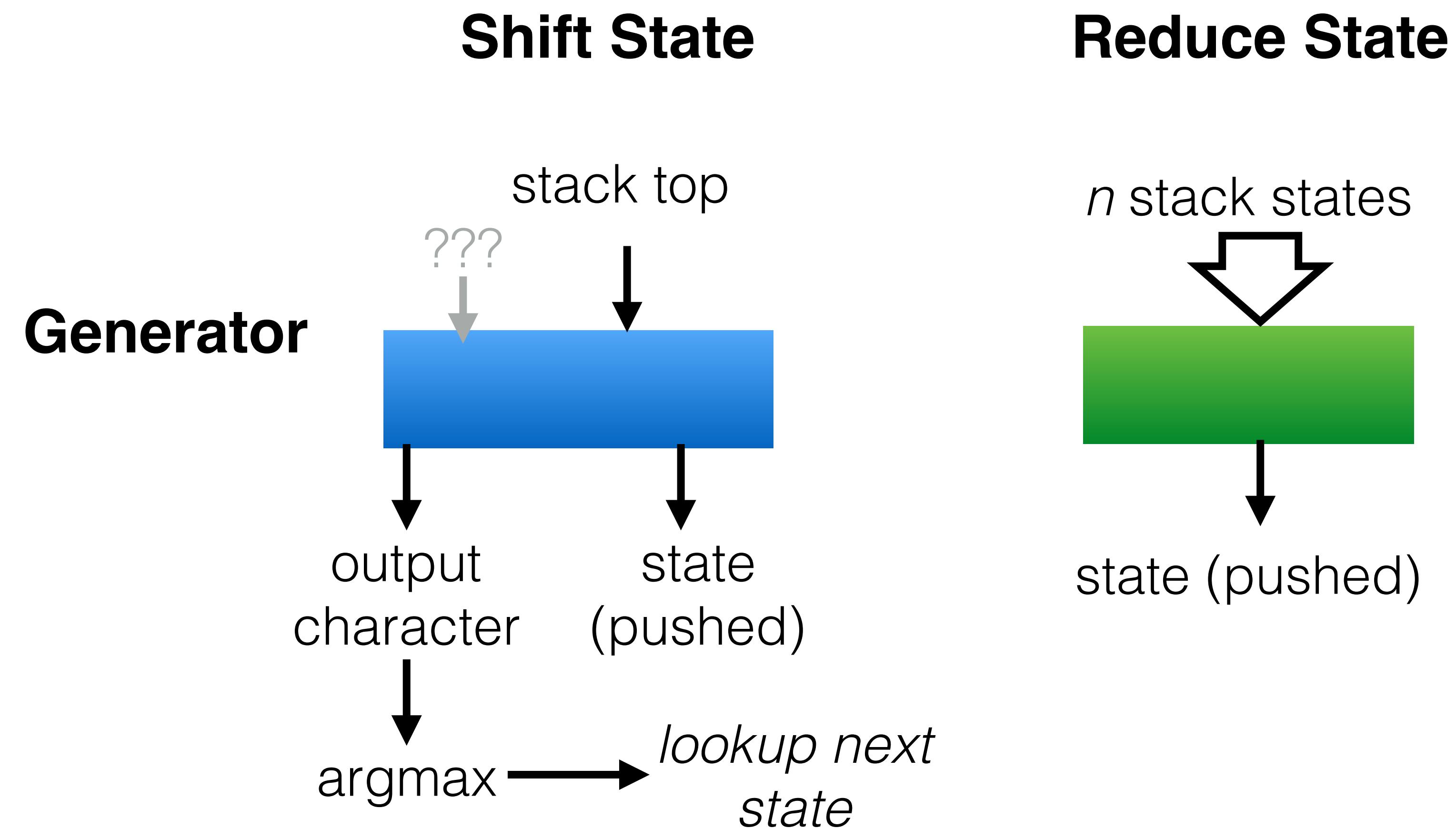
The NN Part

Implement every state as its own neural network that calculates a function of the input in the context of the parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

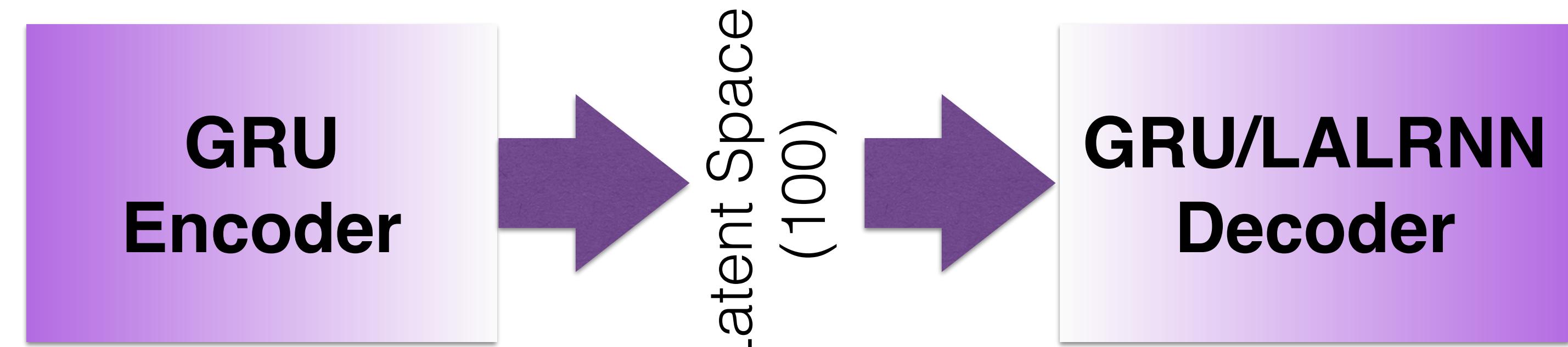
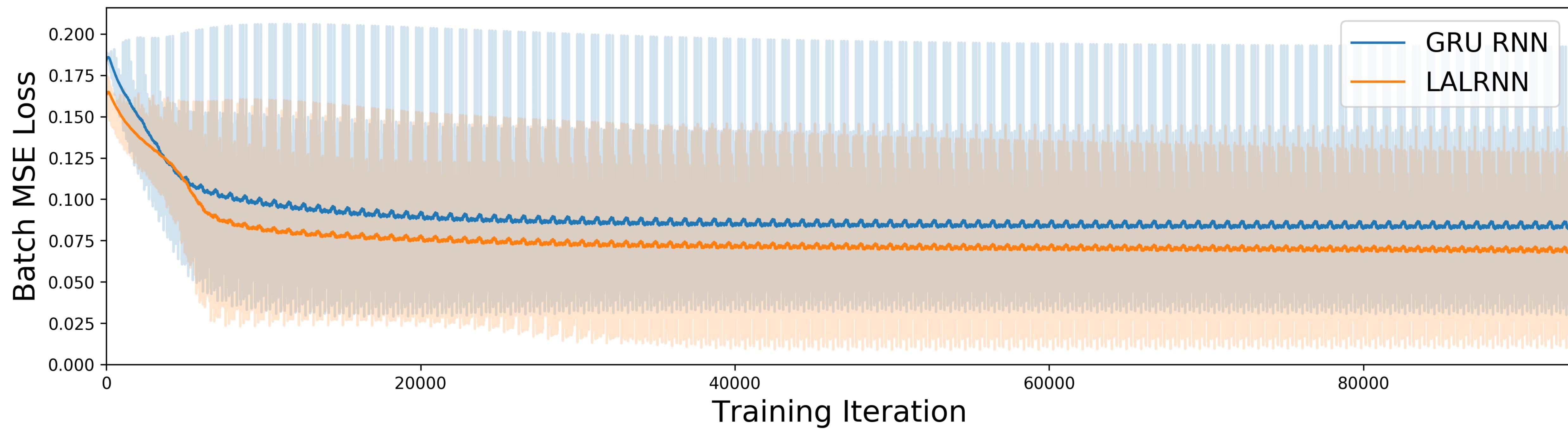


The NN Part

Implement every state as its own neural network that calculates a function of the input in the context of the parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)



LALRNN vs GRU



Thoughts

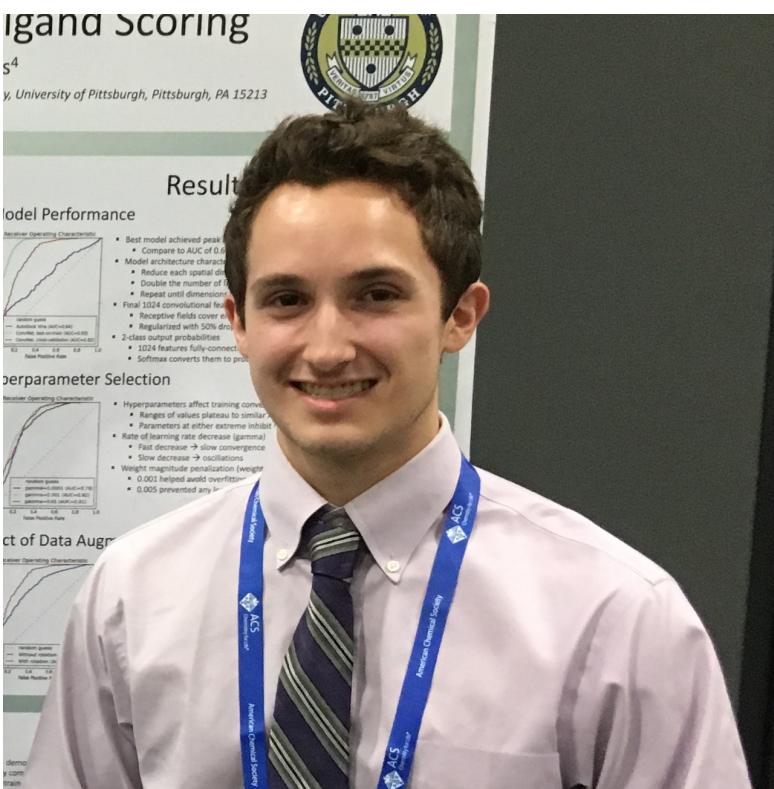
Deep Learning: not just for supervised learning

- can generate examples from data distribution

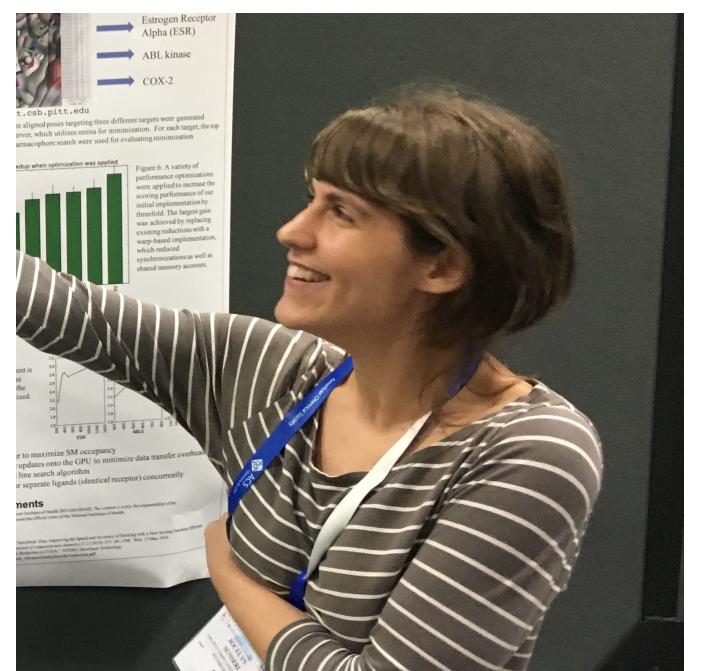
Teach the network through data **and** instruction

- how can we productively impose physics in the network?

Acknowledgements



Matt Ragoza

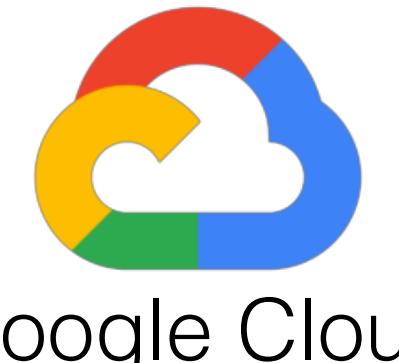


Jocelyn Sunseri Paul Francoeur

AI GRANT

National Institute of
General Medical Sciences
[R01GM108340](#)

NVIDIA®



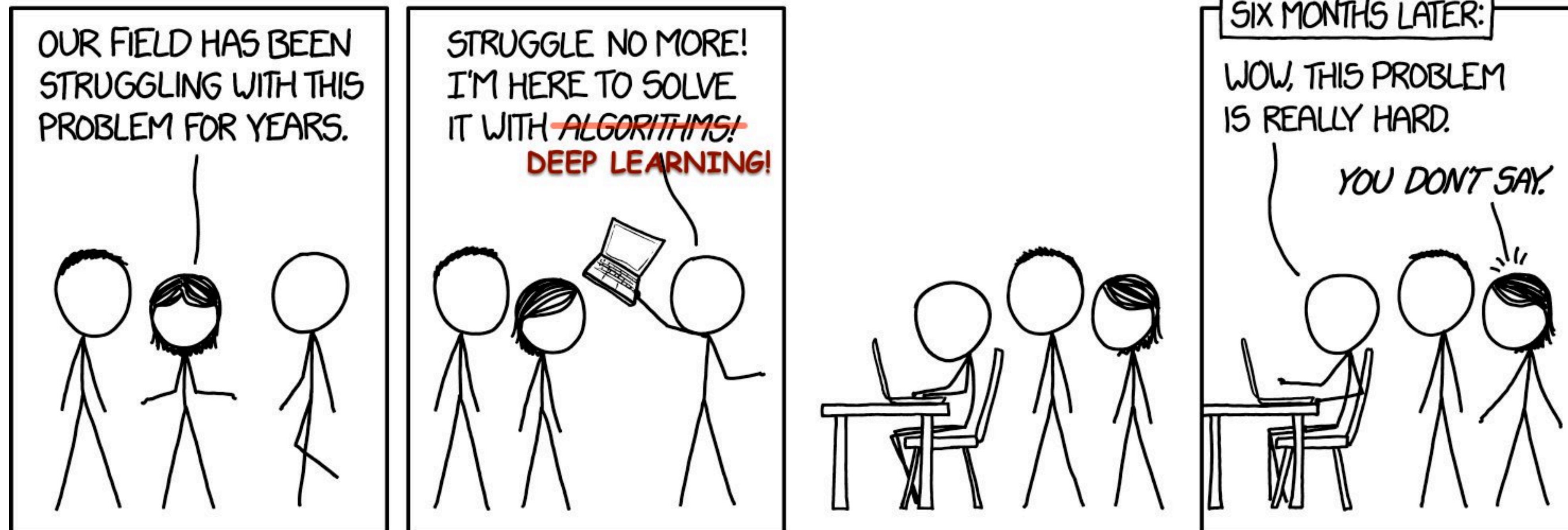
Google Cloud

Department of
Computational and
Systems Biology

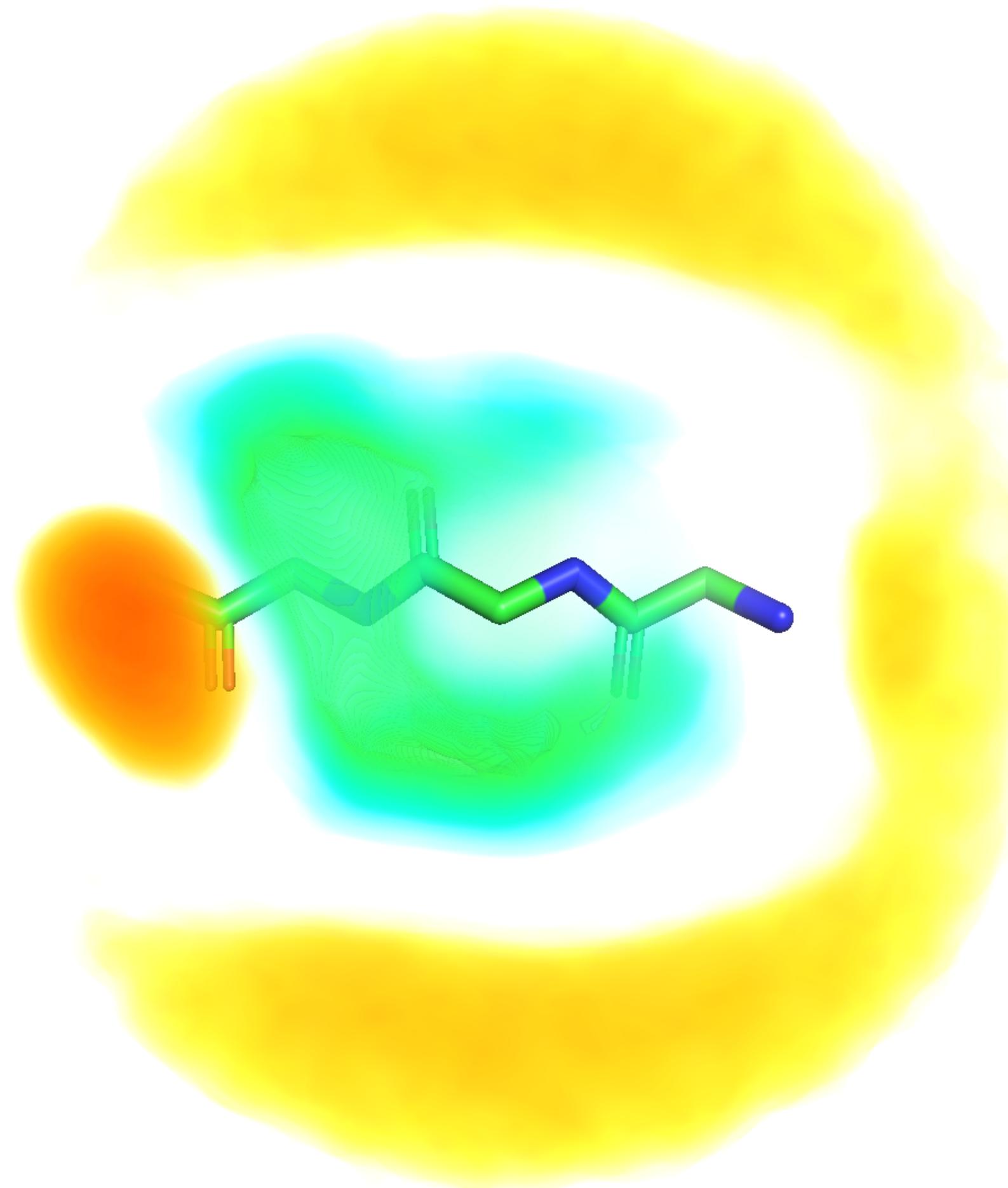
 github.com/gnina

 <http://bits.csb.pitt.edu>

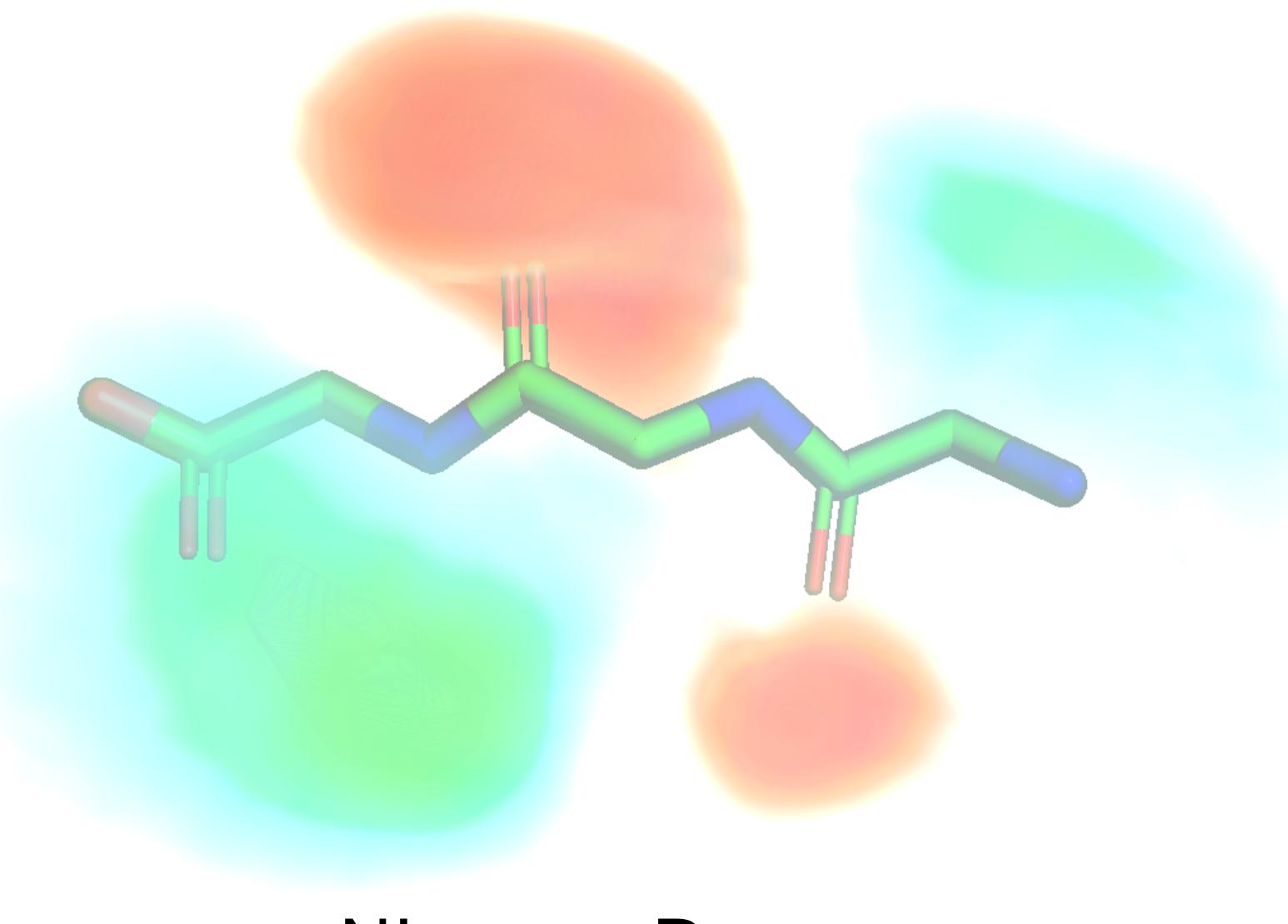
 [@david_koes](https://twitter.com/david_koes)



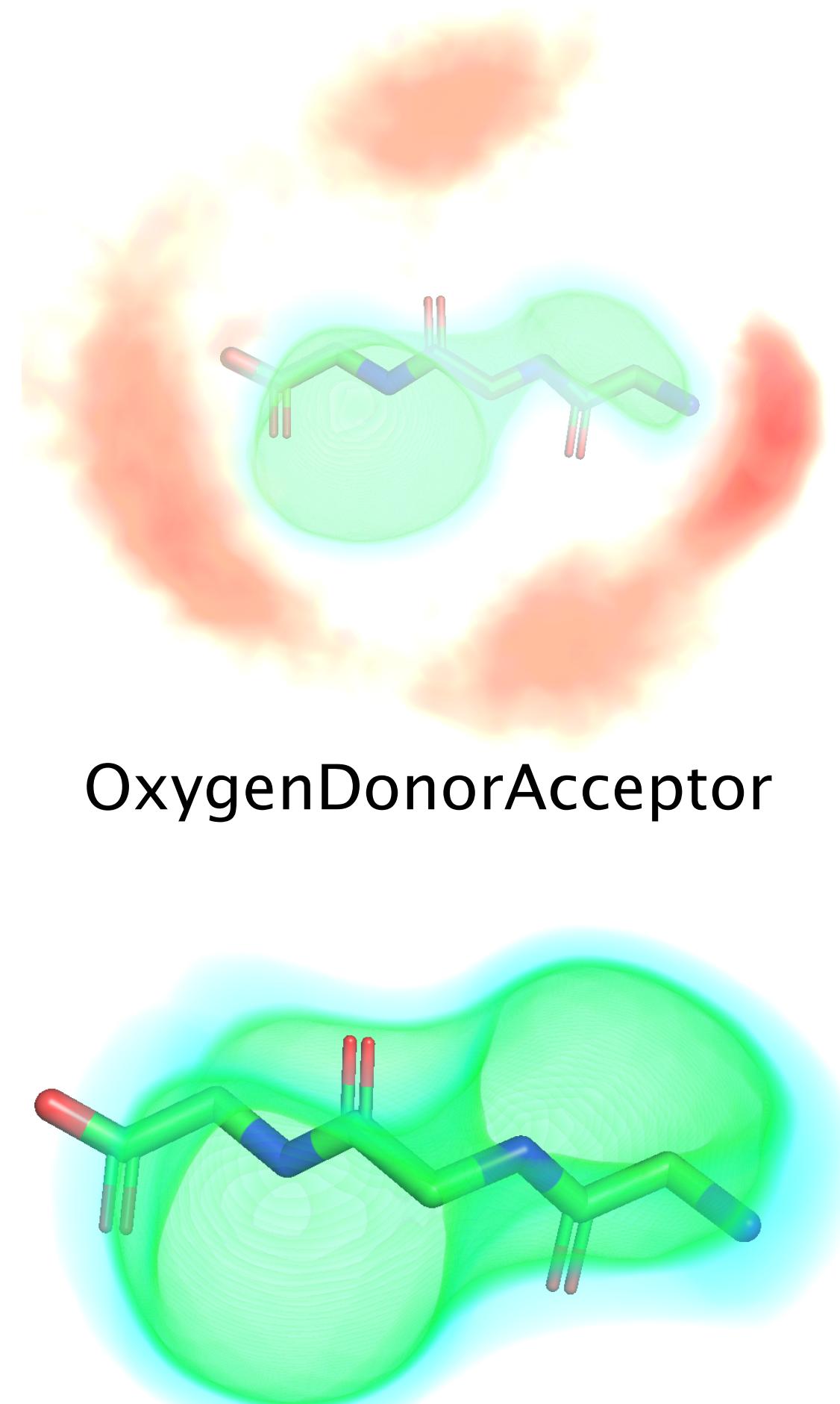
But what is it learning?



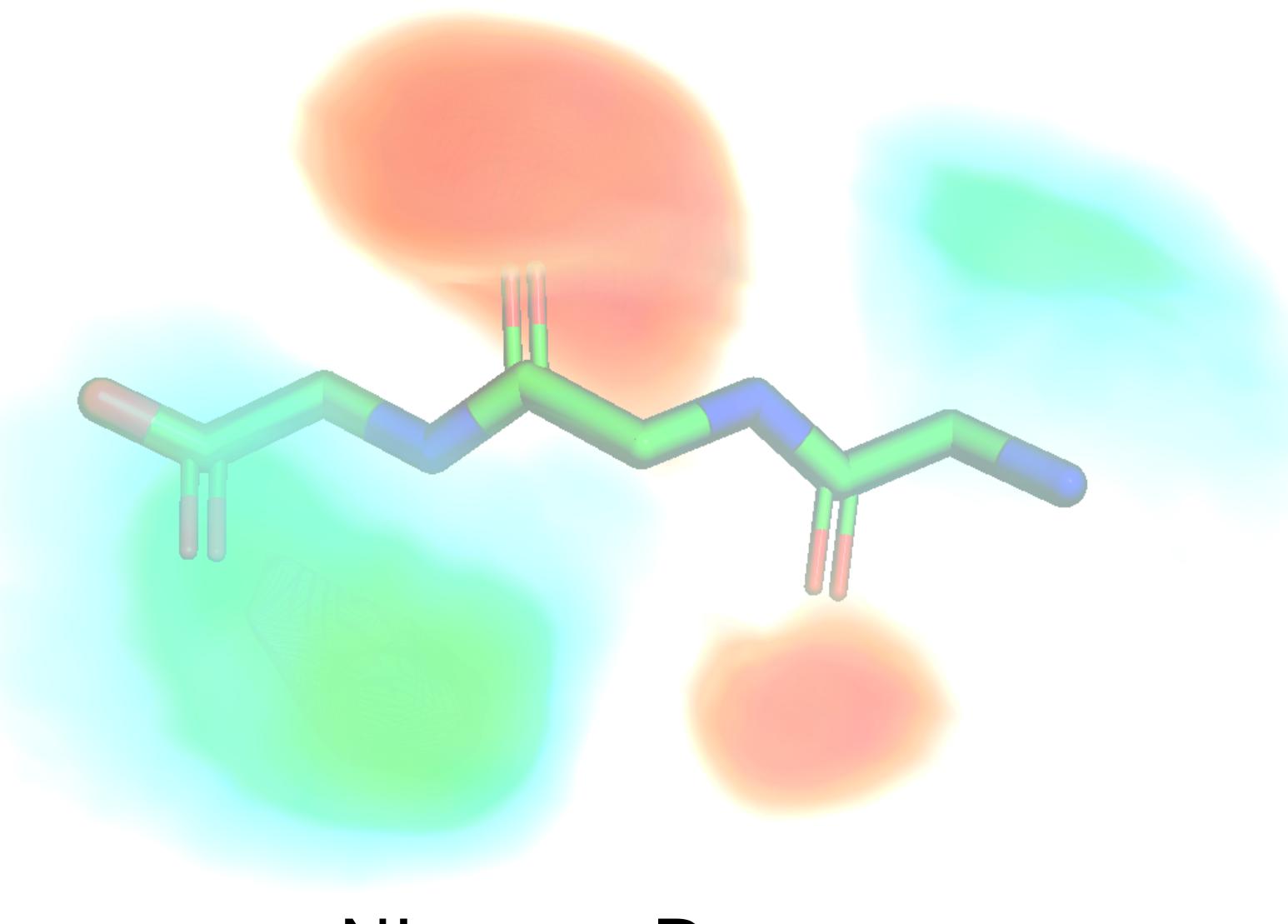
AliphaticCarbon



NitrogenDonor



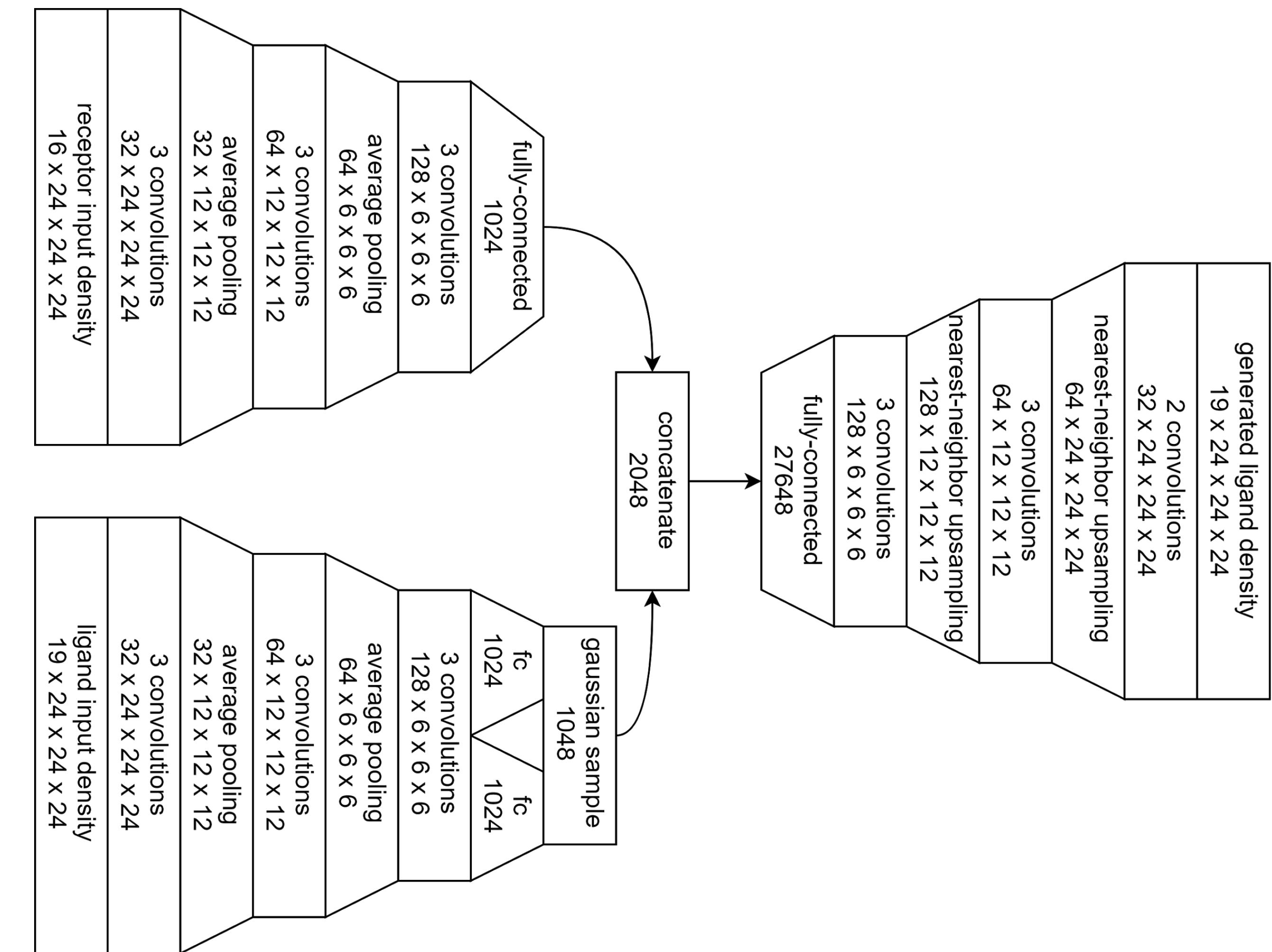
OxygenAcceptor



OxygenDonorAcceptor

Model Architecture

```
n_levels = 3
conv_per_level = 3
n_filters = 32
width_factor = 2
n_latent = 1024
```



Training Procedure

2016 PDBbind refined set

3765 crystal structures

Vina docking

RMSD < 2 Å from crystal pose

8648 poses (~2.3 per target)

random rotation & translation

Adam optimization
base_lr = 0.00001
momentum = 0.9
momentum2 = 0.999
max_iter = 100000
batch_size = 50

Caffe