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Structure Based Drug Design

Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction
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O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
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Protein-Ligand Scoring
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, 
a feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Deep Learning
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Deep Learning
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Deep Learning
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Convolutional Neural Networks
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Convolutional Filters
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Protein-Ligand Representation
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(R,G,B) pixel
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Protein-Ligand Representation
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret

 12

Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Data Augmentation
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Data Augmentation
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Optimized Models
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Pose Results
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Affinity Results
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Affinity Results
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Beyond Scoring
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Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Beyond Scoring
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Minimizing Low RMSD Poses

better worse
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Iterative Refinement
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Iterative Refinement
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Iterative Refinement
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Generative Modeling

 23
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Discriminative Model

 24

Features X Prediction y
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Generative Model

 25

Features X
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Generative Model

 25

Features X
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Generative Model

 25

Features X

y?
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Generative Adversarial Networks

 26

Generator

Discriminator

True Examples
Loss

Is this a 
real dog 
picture?
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Generative Adversarial Networks
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Generator

Discriminator

True Examples
Loss

Is this a 
real dog 
picture?
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Generative Adversarial Networks
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Generative Adversarial Networks
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http://torch.ch/blog/2015/11/13/gan.html



https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg


https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg
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Generative Models

 29
noise sample generated receptor & ligand grid

Generative models approximate a data distribution directly. They can 
map samples from one distribution (noise or input data) to realistic 
samples from an output distribution of interest.
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Autoencoding

 30

Latent 
Space

GeneratorEncoder L2 Loss
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Autoencoding

 30

Latent 
Space

GeneratorEncoder L2 Loss
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Context Encoding

 31http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Context Encoding

 32

receptor grid generated ligand grid
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Receptor-Conditional Ligand-Variational Model

 33

L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model

 34

L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model

 35

GAN loss

Discriminator
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Autoencoding Examples

 362AVO
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Autoencoding Examples

 362AVO



University of Pittsburgh Computational and Systems Biology

Autoencoding Examples

 374PYX
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Autoencoding Examples

 374PYX
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Autoencoding Examples

 381LBF
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Autoencoding Examples

 381LBF
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Conditioning on the Receptor

 39
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Conditioning on the Receptor
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Atom Fitting

 40



University of Pittsburgh Computational and Systems Biology

Atom Fitting

 40
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Two Atom Toy System

 41

ligand
2Å

protein
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Atom Fitting Loss

 42

GAN loss

Discriminator

Atom 
Fitting

L2 loss
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Atom Fitting Loss

 43

ligand

Two atom toy system

2Å
protein
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Atom Fitting Loss
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ligand

Two atom toy system

2Å
protein
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Batch Discrimination

 44

GAN loss

Discriminator

generated
real
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Atom Fitting + Batch Discrimination
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ligand

Two atom toy system

2Å
protein
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Atom Fitting + Batch Discrimination
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ligand

Two atom toy system

2Å
protein



University of Pittsburgh Computational and Systems Biology

Iterpolating
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ligandprotein

Two atom toy system

2Å
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Iterpolating

 46

ligandprotein

Two atom toy system

2Å
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LALRNN 
Removing the third dimension

 48
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Chomsky Hierarchy

 49
http://www.cs.appstate.edu/~dap/classes/2490/chapter11print.html
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Grammars

 50

  S → 𝜀 
  S → (S) 
  S → SS 

  S → 𝜀 
  S → aSa 
  S → bSb 

PalindromesBalanced 
Parentheses E ::= id

    | num
    | E + E
    | E * E
    | ( E )

Arithmetic 

()
((()))()(())
()()()()()

aa
babbab
abbaabba

3 + 4 * 5
(3 + 4) * 5



University of Pittsburgh Computational and Systems Biology

Grammars

 50

  S → 𝜀 
  S → (S) 
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Bottom Up Parsing (LALR)

 51

action goto
state ident + $ E T

0 s3 g1 g2
1 a
2 s4 r2
3 r3 r3
4 s3 g5 g2
5 r1

 S → E$ 

 E → T + E 

 E → T 

 T → identifier

while(true) 
 s = state on top of stack 
 a = current input token 
 if(action[s][a] == sN)   shift 
  push N 
  a = next input token 
 else if(action[s][a] == rR)  reduce 
  remove rhs of rule R from stack 
  X = lhs of rule R 
  N = state on top of stack 
  push goto[N][X] 
 else if(action[s][a] == a)  accept :-) 
  return success 
 else       error 
  return failurex + y$

states != rules

A PDA can be implemented with a parse table



University of Pittsburgh Computational and Systems Biology

RNA Secondary Structure

 52

c1ccccc1N
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The NN Part

 53

Implement every state as its own neural network that calculates a function of the input in the context of the 
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Encoder

input  
character

Shift State
stack 
top

state (pushed)

Reduce State

n stack states

state (pushed)
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The NN Part

 54

Implement every state as its own neural network that calculates a function of the input in the context of the 
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Generator

Shift State

stack top

state 
(pushed)

Reduce State

n stack states

state (pushed)output 
character

argmax lookup next 
state

???
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LALRNN vs GRU
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GRU
Encoder

La
te

nt
 S

pa
ce

 
(1

00
) GRU/LALRNN

Decoder
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Thoughts

Deep Learning: not just for supervised learning 

• can generate examples from data distribution 

Teach the network through data and instruction 

• how can we productively impose physics in the network?

 56
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github.com/gnina
http://bits.csb.pitt.edu
@david_koes

http://github.com/gnina
http://bits.csb.pitt.edu
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But what is it learning?

 59

AliphaticCarbon

NitrogenDonor OxygenDonorAcceptor

OxygenAcceptor

-                                     +
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Model Architecture

 60

n_levels = 3 
conv_per_level = 3 
n_filters = 32 
width_factor = 2 
n_latent = 1024 
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Training Procedure

 61

2016 PDBbind refined set
3765 crystal structures 
Vina docking 
RMSD < 2 Å from crystal pose 
8648 poses (~2.3 per target) 
random rotation & translation 

Adam optimization 
base_lr = 0.00001 
momentum = 0.9 
momentum2 = 0.999 
max_iter = 100000 
batch_size = 50 


