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Scoring

Dynamics
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Accessible

gauss,(d) =

gauss,(d) =

0.1

Score (kcal'mol)

0.15

026 -
-1

hydrophobic(d)

hbond(d)

repulsion(d) =

Drug Discovery Funnel

—(d/0.5)?
Wenass, € (d/0.5)

Wgnass, €~ (@32

{ wrcpulsiond2 d<0

0 d>0
whydrophobic d<0.5
0 d>1.5

Whydrophobic(1.D — d)  otherwise

Whbond d < —=0.7
0 d>0

Wibond (—2d)  otherwise

7

0.05

-0.05

01}

02 |

7

£ (21| o J—
steric + hydrophobic ——
steric + H-bond

0 1

2 3 4 5 6

Surface distance (A)

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
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Hidden

o(W4-x+b4)

Output

Neural Networks

Computational and Systems Biology

w,
X, >

/
X

output = o (Z w; x; + b)

\ 02| /
@ » output l

The universal approximation theorem
states that, under reasonable assumptions,
a feedforward neural network with a finite
number of nodes can approximate any
continuous function to within a given error
over a bounded input domain.
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Convolutional Neural Networks

) )

Dog: 0.99
Cat: 0.02
Convolution Convolution Fully Connected
Feature Maps Feature Maps Traditional NN
Convolution Fully-connected
' ‘ ‘ weight 1 ——  weight 1
— Weight 2 weight 2
— Weight 3 — Weight 3
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Convolutional Filters
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Protein-Ligand Representation

(R,G,B) pixel
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OO OO
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G ' 16 pG)
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OO,
OO,

OMOMNONG

Computational and Systems Biology
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ClC|ICIC O
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CICIC|C
ClLC | C

CiC C|C

CiC C|C

Computational and Systems Biology

Protein-Ligand Representation

(R,G,B) pixel —

(Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this
representation are the choice of
grid resolution, atom density,
and atom types.
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Why Grids?

Cons Pros
* coordinate frame dependent * clear spatial relationships
* pairwise interactions not explicit * amazingly parallel

* easy to interpret

@ /
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Data Augmentation
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tfinity Results
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Beyond Scoring

Affinity
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Pseudo-Huber Loss
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Rectified Linear Unit

3x3x3 Convolution

o g

B - 8]
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S Score
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Softmax+Logistic Loss

optimize
with prior
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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Minimizing Low RMSD Poses
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lterative Refinement
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Generative Modeling
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Discriminative Model

Features X =—> E —3 Prediction y
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Generative Adversarial Networks
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Generative Adversarial Networks

Generative Adversarial Networks

https://arxiv.org > stat v
by IJ Goodfellow - 2014 - Cited by 4339 - Related articles
Jun 10, 2014 - Submission history. From: lan Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17

GMT (1257kb,D). Which authors of this paper are ...
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Generative Adversarial Networks

Generative Adversarial Networks

https://arxiv.org > stat v | )
by |J Goodfellow - 2014 - Cited by 4339 - Related articles http://torch.ch/blog/2015/11/13/gan.hitm

Jun 10, 2014 - Submission history. From: lan Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17
GMT (1257kb,D). Which authors of this paper are ...

27



PROGRESSIVE GROWING OF GANS FORIMPROVED
QUALITY, STABILITY, AND VARIATIGN

Tero Karras Timo Aila Samuli Laine

Jaa ko Lefitinen
NVIDIA NVIDIA NVIDIA ’

NVIDIA
_ Aalto University

SANVIDIA. - /

https://voutu.be/GO06dEcZ-QT



https://www.youtube.com/watch?v=G06dEcZ-QTg

PROGRESSIVE GROWING OF GANS FORIMPROVED
QUALITY, STABILITY, AND VARIATIGN

Tero Karras Timo Aila Samuli Laine

Jaa ko Lefitinen
NVIDIA NVIDIA NVIDIA ’

NVIDIA
_ Aalto University

SANVIDIA. - /

https://voutu.be/GO06dEcZ-QT



https://www.youtube.com/watch?v=G06dEcZ-QTg

University of Pittsburgh Computational and Systems Biology

Generative Models

Generative models approximate a data distribution directly. They can
map samples from one distribution (noise or input data) to realistic
samples from an output distribution of interest.

A <_ Generator

noise sample generated receptor & ligand grid
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Encoder

Latent
Space

Autoencoding

(Generator

Computational and Systems Biology

o L2 Loss
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Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules

®

SMILES input

ENCODER

Neural Network

CONTINUOUS

MOLECULAR

REPRESENTATION
(Latent Space)

DECODER

Neural Network

SMILES output

Computational and Systems Biology
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ORI || T

http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Context Encoding

receptor grid generated ligand grid
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Receptor-Conditional Ligand-Variational Model

L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model

L2 loss
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Receptor-Conditional Ligand-Variational Model

GAN loss

Discriminator
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Autoencoding Examples
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Autoencodmg Examples
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Autoencoding Examples

I RN 20
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Autoencoding Examples
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Autoencodmg Examples
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Autoencoding Examples
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38



University of Pittsburgh Computational and Systems Biology

Condlhonlng on ’the Receptor
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Condlhonlng on ’the Receptor
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Atom Fitting

a* = argmin||d — D(a)||5 + A\E(a)
a
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Atom Fitting

a* = argmin||d — D(a)||5 + A\E(a)
a
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Atom Fitting Loss
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Atom Fitting Loss

@ O
— X

Two atom toy system
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Atom Fitting Loss

@ O
— X

Two atom toy system
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Batch Discrimination

generated
.

Discriminator

—
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Atom Fitting + Batch Discrimination

e
—

Two atom toy system
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Atom Fitting + Batch Discrimination

e
—

Two atom toy system
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lterpolating

T
—

Two atom toy system
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Two atom toy system
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LALRNN

Removing the third dimension
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Chomsky Hierarchy

Turing-decidable \ Turing machines that always accept orreject
An Introduction to
[Nondeterministic" Turing machines thatuse only 3s much tape as the and AUTOMATA
Context-Free [type 2| \ input takes
Deterministic \ \

Nondeterministic pushdown automata

Context-sensitive [type 1)

/ / /' Deterministic pushdown automata

Finite automatsa

PETER LINZ

INCLUDES CD-ROM

http://www.cs.appstate.edu/~dap/classes/2490/chapter11print.ntml
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Grammars

Balanced Palindromes Arithmetic
Parentheses S > ¢ E ::= 1d
S - ¢ S —» aSa num
S = (S) S = bSb E + E
S - SS E * E
( E )
() aa
3 + 4 * 5
(CC)))CO)C()) babbab (3 + 4) * 5

()O)O) ) () abbaabba
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Grammars
Balanced Palindromes
Parentheses i\ a-u 3 S e
S > ¢ G G S - aSa
S — (S) x 5 S - bSb
S - SS = =
G C
( ) G C aa
( ( ( ) ) ) ( ) ( ( ) ) GGGAGAAUUGUCCC babbab
(VOO e, )))) abbaabba

E

Computational and Systems Biology

Arithmetic

¢+ := 1d

num
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Bottom Up Parsing (LALR)

A PDA can be implemented with a parse table

while (true)

action goto
: s = state on top of stack
state | ident |+ b : i a = current input token
O s3 gl g2 if (action[s] [a] == sN) shift
1 a push N
p) s4 2 a = next input token
3 3 3 else if (action[s][a] == rR) reduce
4 s3 g5 g2 remove rhs of rule R from stack
X = lhs of rule R
S5 rl
N = state on top of stack
push goto[N] [X]
S —-E$ . .
- T4 E else if (action[s][a] == a) accept :-)
—= I+ return success
E—T else error

T — identifier X T y$ return failure

51



University of Pittsburgh Computational and Systems Biology

RNA Secondary Structure

state | . ( ) || S
N e RN .
s () —etairs
s (5) Tiamtats
5 — §(5) el
55— Redies Sy
§ - §() T jmmesss
12 END
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The NN Part

mplement every state as its own neural network that calculates a function of the input in the context of the
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Shift State Reduce State
iInput Stack
character n stack states

Encoder i i i

state (pushed) state (pushed)
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The NN Part

mplement every state as its own neural network that calculates a function of the input in the context of the
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Shift State Reduce State
stack top n stack states
Generator
output state state (pushed)
character (pushed)
arg#ax - lookup next

state
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Batch MSE Loss

0.200 -

0.175 -

0.150 -

0.125 -

0.100 ~

0.075 -

0.050 ~

0.025 -

0.000

LALRNN vs GRU

Computational and Systems Biology

)
@)
q0)
GRU A EC:; GRU/LALRNN
Encoder g . Decoder
15
1
—— GRU RNN
LALRNN
20600 40600 60600 80600

Training lteration
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Thoughts

Deep Learning: not just for supervised learning
* can generate examples from data distribution
Teach the network through data and instruction

* how can we productively impose physics in the network?
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() github.com/gnina
@ http://bits.csb.pitt.edu
) @david_koes

SIX MONTHS LATER:
OUR FIELD HAS BEEN STRUGGLE NO MORE! | .
STRUGGLING WITH THIS T'M HERE TO SOLVE. WOL, THIS PROBLEM

PROBLEM FOR YEARS. T JITH-ALGORITFMS! 15 REALLY HARD.
| DEEP LE ( YOU DONT SAY

§ll
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But what is it learning?

NitrogenDonor OxygenDonorAcceptor

E +

AliphaticCarbon

OxygenAcceptor
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Model Architecture

generated ligand density
19X 24 x 24 x 24

2 convolutions
32x24 x24 x 24

nearest-neighbor upsampling

64 x 24 x 24 x 24

3 convolutions
64 x12x12x12

earest-neighbor upsampling

128 x 12 x12x 12

3 convolutions
128 X6 X6 X6

fully-connected
27648

concatenate

2048 T

gaussian sample

1048
fully-connected fc fc
1024 1024 1024
3 convolutions 3 convolutions
128 X6 X6 X6 128 X6 X6 X6
average pooling average pooling
64 xXx6X6Xx6 64 X6 X6Xx6

3 convolutions
64 x12x12x12

3 convolutions
64 x12x12x12

average pooling
32x12x12x12

average pooling
32x12x12x12

3 convolutions 3 convolutions
32X 24 x24 x24 32X 24 x24 x 24
receptor input density ligand input density
16 X 24 x 24 x 24 19X 24 x24 x 24
QP
1
o QU
D 1 QA
o 3N L O
— ep) m A
095 05
| © O
O - = q®
~ — O
| O |- |
C O cCc =2 C
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Training Procedure

2016 PDBbInd refined set
3765 crystal structures

Vina docking

RMSD < 2 A from crystal pose
8648 poses (~2.3 per target)
random rotation & translation

GPDR 1 d

Adam optimization
base Ir = 0.00001
momentum = 0.9
momentum?2 = 0.999
max_Iter = 100000
batch_size = 50

Cafte
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